

São Paulo 10/15 de abril de 1972

GRUPO DE ESTUDOS DE PROTEÇÕES, TELECONTROLE E TELECOMUNICAÇÕES (GTC)

"APLICAÇÃO DE COMPUTADORES DE CONTROLE DE PROCESSOS EM SISTEMAS DE ENERGIA ELÉTRICA"

Engo Mário Måerker

COMPANHIA PARANAENSE DE ENERGIA ELÉTRICA - COPEL

1.0 - INTRODUÇÃO:

A tendência da evolução dos sistemas de despacho de carga nas companhias de fornecimento de energia elétrica tem sido no sentido de centralizar a informação necessária, para a descrição e o controle ótimo da operação do sistema.

A evolução nos Estados Unidos foi uma passagem gradual de operação descentralizada para centros de despacho com telemetria dos dados em forma analógica e operação de controle manual, para telemetria digital e operação semiautomática ("OFFLINE") e finalmente para operação automática ("REAL TIME") integral.

É verdade que parte do estimulo para a operação au tomatizada em "real time" foi devida ao fato da proliferação de usi nas termoelétricas naquele país.

É verdade também, entretanto, que a automatização - se evidenciou como um auxilio importante para o pessoal de operação e praticamente indispensável para a operação eficiente dos sistemas interconetados de grande porte.

A implementação de telemetria digital implica no suso de computadores de pequeno porte para o manejo dos dados recebidos. Dai é um passo para ampliar a ação do computador "ONLINE" a fim de executar os cálculos para controle de carga e frequência e o des

despacho otimizado, além de supervisionar a seguranca do sistema, fazer a previsão de demanda, e outros procedimentos que anteriormente eram feitos à parte.

Estes computadores podem variar desde grandes apare lhos com a incorporação das mais sofisticadas técnicas, até pequenos minicomputadores especializados, pouco mais que calculadoras de mesa.

A escolha do aparelho mais adequado é tarefa dificil devido ao número de considerações em conflito, tais como preço x capacidade, sofisticação x necessidades do sistema, expandibilidade x simplicidade, e outros mais.

2.0 - O SISTEMA DE TELEMETRIA:

Cada caso deve ser estudado em particular, e em ramais secundários com "LINKS" de curta distância em ambien tes favoráveis pode ser usada transmissão analógica, em F.M. por exem plo, para economizar equipamento. Na verdade o que se faz em sistemas de aquisição de dados usualmente é dispor estratégicamente um terminal do tronco principal de comunicações (onde é usada P.C.M.) e fazer a multiplexagem de ramais individuais onde a transmissão pode ser analógica. Os ramais conduzem aos transdutores. No terminal, além do multiplex, é preciso converter os dados para P.C.M. com isto é usado um só conversor, que é um equipamento caro. Nem sempre porêm isto é pos sível. Se algum terminal remoto é muito distante dos outros pode ser preciso dedicar-lhe um conversor exclusivo, anexo ao transdutor.

Note-se que ao adotarmos a modulação P.C.M., estamos fazendo um compromisso entre confiabilidade, preço e rapidez. O sistema de modulação P.C.M., é mais confiável que a transmissão analó gica, porém é mais caro e mais "lento", de um ponto de vista de transmissão de informação. Além disso o equipamento mais complexo, se refle tirá em maiores despesas de manutenção. Não obstante, a tendência da transmissão de dados atual é toda a favor da modulação P.C.M.

O intercâmbio de informação é efetuado em "blocos" de dados, cada bloco contendo diversas "palavras", a palavra corres - pondendo a um dado. Além disso o bloco contém informação adicional para efetuar a deteção de êrros devidos à interferências diversas no - processo de transmissão. A razão da transmissão de dados em blocos é

de ordem técnica, para conseguir sincronização, etc.. O formato da mensagem é cuidadosamente estudado para obter a máxima eficiência de transmissão. A eficiência de transmissão é:

$$\eta_{\rm T} = \frac{T_{\rm B}}{T_{\rm C}}$$

Onde I :

É a informação transmitida no bloco e I_C - é a máxima quantidade de informação no bloco que o canal permite transmitir.

Como vemos, o terminal efetua a multiplexagem dos transdutores, levando um certo tempo TM para um ciclo completo. Se tivessemos somente um terminal, os dados poderiam ser transmitidos a medida que fossem captados pelo terminal. Usualmente teremos diver - sos terminais. Neste caso seria necessário um estudo cuidadoso dos diversos ciclos no sistema a fim de evitar a superposição de mensa - quens na recepção. Este inconveniente pode ser evitado por meio de um esquema de "Pedido de Dados" da central para o terminal e a conse - quente "Resposta" permitindo uma sincronização adequada. Isto porém implica no uso de um computador. Como trahalhamos em P.C.M. e com - grande velocidade, o computador deve ser digital.

Também no terminal será necessário armazenar os da dos até sua requisição pela central, o que implica em memórias digitais. Também são precisos circuitos lógicos para decodificar o pedido da central e organizar o bloco de dados, o que implica em capacidade de programação, ficando o terminal como um pequeno computador.

zação de um algoritmo. Podemos descrever simbolicamente a ação de coleta de dados, recepção de mensagens da central, execução de ações de controle, organização e transmissão de blocos de dados. O terminal seria então um sistema que executaria o algoritmo eletrônicamente. O algoritmo seria programado no terminal, em uma memória especial. Circuitos de contrôle tomariam o encargo de realizar cada pas so do alritmo. Basicamente é o que realmente é feito em alguns sistemas à venda.

3.0 - CARACTERÍSTICAS DO COMPUTADOR DE CONTROLE:

Independendo do fabricante escolhido, a maquina ad quirida deverá apresentar certas características que podem ser defi

nidas em vista do que se deseja. Como resumo o que seria preciso:

- a) Comando e amostragem de dados e aparelhos situados à grandes distâncias geográficas.
- b) Controle de carga e frequência.
- c) Distribuição econômica de geração.
- d) Previsão de demanda.
- e) Determinação de reservas.
- f) Compilação de estatísticas.
- g) Outras funções que o pessoal de operações do sistema achar conveniente.

No que se refere à programação (ou <u>SOFTWARÉ</u>) teriamos diver sos algoritmos a serem executados para as diversas funções. Basicamente porém, teriamos um programa monitor que controlaria as diversas fases de operação do sistema (<u>SOFTWARÉ</u>), um programa para o controle da entrada é saida de dados e um para estabelecer prioridades entre os diversos programas de funções (os dois poderiam ser incorporados no monitor), e as subrotinas que executariam as diversas operações e cálculos para realizar as funções desejadas. As subrotinas — constituiriam o que se chama de "Biblioteca", mas estariam sempre — carregadas na máquina.

As características de " HARDWARE " seriam basicamente:

- a) Line Buffers (Memoria de Entrada e Saida) e Multiple xagem na entrada e saida.
- b) Grande quantidade de acessos ("inputs")
- c) Grande rapidez de processamento, o que implica em:
- d) Memórias de semicondutores ou um esquema de memórias suplementares de rápido acesso. (Para estocagem de su brotinas e dados, e "DUMPING" de programas de menos prioridade).
- e) Capacidade de multiprocessamento.
- f) Pouca sofisticação de circuitos aritméticos.
- g) Capacidade de expansão e integração com outros computadores (semelhantes ou não) em sistemas de maior porte.

4.0 - O PROCESSAMENTO PARALELO

Nos encargos de operação podemos notar que a maioria das funções são executadas em paralelo, isto é, simul tâneamente. Como a telemedição é usualmente feita por multiplexagem,

podemos processar dados armazenados em um ciclo enquanto o equipa mento de telemetria mosta outros pontos. Esta seria uma primeira di
cotomia do processo de operação: a telemetria, fluindo em um algo ritmo paralelo independente do planejamento e controle. Outras divi
sões são tembém evidentes, como cálculos de controle e de contabili
dade, as várias fases do planejamento, etc.

Como isto influencia a operação ? Para o operador é indiferente, mas o equipamento pode ser de configurações completa - mente opostas. Se usarmos uma unidade processadora (evidentemente de grande porte) trabalhando em série, isto é, executando por exemplo um ciclo de telemedição do sistema, seguido de um cálculo de controle de carga e frequência e geração automática, posteriormente enviando sinais de telecontrole e apresentação de dados ao operador, etc, evidentemente usamos mais tempo e programas mais complexos do que usariamos se tivessemos diversas máquinas (obviamente menores) convenientemente interligadas, dedicadas individualmente às diver - sas fases independentes do processo.

Há de logo algumas objeções. Em primeiro lugar nem to dos os problemas são facilmente decomponíveis em operações parale - las, particularmente os problemas (bastante comuns) do tipo iterativo, em que cada fase depende da anterior. A isto podemos dizer que quase sempre alguma fase do problema envolve operações paralelas, e às vezes podemos decompor problemas em blocos independentes por meio de um enunciado cuidadoso.

De qualquer modo, na pior hipótese a velocidade seria a mesma.

Naturalmente ocorre a objeção do custo. N computado res são N vezes mais caros, no mínimo, que um só computador igual. Isto é verdade, mas se os computadores ligados em paralelo forem - mais simples e baratos pode ocorrer em certos casos que o sistema - seja mais barato, até que um só computador grande. Note-se que não nos preocupamos com os problemas do "software".

Para casos específicos pode ser imensamente mais van tajoso utilizar um sistema de pequenos computadores interligados - no lugar de um grande computador geral.

4.1 - O PROCESSAMENTO PARALELO NA OPERAÇÃO DE SISTEMAS DE ENERGIA ELÉTRICA:

Temos que:

a) - O processo de operação do sistema de energia é faci<u>l</u>
mente decomponível em operações independentes, em pa

paralelo, convenientemente interligadas pelos dados telemedidos do sistema aramazenados em uma memória de acesso comum.

- b) O processamento em paralelo é altamente compensado, em problemas adequados, quando são usados computado res baratos e simples interligados entre si, face ã um computador grande de aplicação geral trabalhando em operação serial. As principais vantagens são:
 - I maior rapidez
 - II maior confiabilidade (se um processador é dis conetado cessa uma só das operações e nao o processamento completo)
 - III- em certos casos, menor preco de aquisição.
 - IV maior flexibilidade na expansão do sistema de processamento com a incorporação de novas uni dades no sistema.

Face à estas conclusões podemos já aventar a hipóte se de que é recomendavel o uso de um sistema de minicomputadores para automatizar as funções de despacho. Há mais um argumento de ordem econômica que é o investimento eficiente. Na rede de proces samento paralelo só é adquirido equipamento necessário para efetu ar os diversos algoritmos da operação.

Ao adquirirmos um grande computador devemos ter uma maquina com capacidade intrínseca de expansão futura para acompanhar o crescimento do sistema. Ora, isto implica em um aparelho que é ineficientemente usado nos primeiros anos, e é absoleto após certo tempo (quando atingir sua capacidade máxima) sendo preciso sua substituição total por outra unidade.

Na rede de minicomputadores vamos crescendo com o sistema, e à medida que é preciso adicionar equipamento basta aco plá-lo ao sistema. Isto requer, naturalmente, um projeto ponderado e que preveja inclusive a possibilidade de incorporar novas má quinas, com tecnologias mais avançadas e até com procedências diferentes. Entretanto estamos sempre com um sistema operante justa mente adequado para nossas necessidades, e nesse sentido o investimento de capital foi otimizado.

O problema é tecnicamente viável e em diversos lugares já são utilizadas redes semelhantes. Prevê-se que no futuro - haja grandes avanços neste sentido no campo de sistemas de proces samento de dados.

Devemos também mencionar que no caso da operação de sistemas de energia elétrica a simplicidade dos diversos algoritmos possibilita o uso de máquinas com pouca sofisticação de mardware ", o que torna uma rede de minicomputadores muito mais barata que um computador grande nas condições mencionadas.

Uma variante possível para o sistema de processame \underline{n} to é apresentada na ILUSTRAÇÃO 4.1.1.

Lembramos entretanto que o esquema é simbólico, e o acesso à memória comum, assim como outros problemas técnicos não estão explicitados. O esquema é basicamente um multi-processador, ou seja, vários minicomputadores ligados à uma memória comum. É necessário um computador para controlar a apresentação de dados - ao pessoal da operação devido ao grande número de unidades de saí da envolvidas.

Neste sistema os programas são "residentes" na memó ria, o que torna desnecessária a capacidade de processar muitos - programas diferentes como nos computadores usuais, assim como o uso de compiladores para linguagens especiais. Isto também implica em um mínimo de pessoal de operação de computador, como progra madores e analistas, porque os programas hásicos são feitos inicialmente, e todo o trabalho reduz-se à adição de novas subrotinas, ou o equivalente, aos programas "residentes", à medida que o sistema é expandido, pela incorporação de novas unidades que influam nas funções de controle.

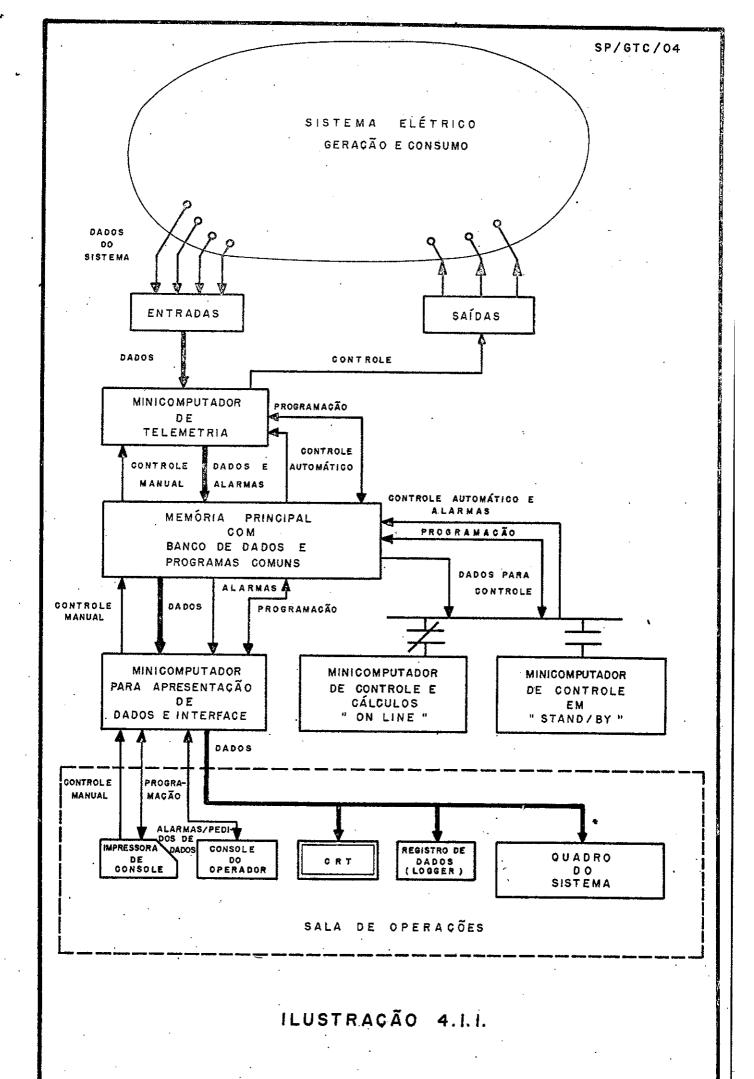
Isto é previsto no "software" inicial. Também é in teressante lembrar que a adição de novos pontos de telemetria é feita de maneira muito mais simples, pela introdução conveniente de valores de parâmetros nos programas residentes.

Outra característica interessante da rede de mini - computadores é a possibilidade da incorporação em "software" de - um esquema de segurança interna. Assim, no caso de pane de um dos blocos de computação menores, por exemplo o mini de telemetria, um esquema judicioso de prioridades pode interromper a execução de alguns programas no computador principal (o de controle) e transferir para seu lugar as funções de telemetria, em carater de emer gência. Isto torna necessário somente o "backup" do minicomputa - dor principal em termos de "hardware", o que representa uma econo

mia razoável, e é algo inviável num único computador grande (seria preciso um CPU de "backup" de proporções bastante grandes, possi - velmente de mesmo tamanho que o da unidade "on-line").

4.2 - CONCLUSÕES

Do que já foi dito é possível tirar algumas conclusões no que se refere às características do sistema. Tenhamos a ILUSTRAÇÃO 4.1.1 em mente:


- a) Grande quantidade de acessos.
- b) "Line-buffers" (memorias de entrada).
- c) Multiplexagem na entrada.
- d) Grande rapidez de processamento, na dependência do me nor tempo de medição de alguma variável do sistema elétrico (o que é conseguido, como vimos, com a operação simultânea dos vários minicomputadores).
- e) Memória básica de capacidade suficiente para estocagem da informação telemedida e programas residentes de uso ceral. Esta memória deve ter possibilidade de acesso co mum aos vários minicomputadores. (É o "banco de dados")
- f) "Software" com capacidade de incorporação de novas unidades por meio de adição prevista de subrotinas correspondentes.
- g) "Software" com capacidade de transposição de funções, em emergências, dos minis menores para o maior segundo al que esquema de prioridades.
- h) Unidades de processamento bastante autônomos, com peque nas memórias próprias para estocagem de seus programas residenciais particulares.
 - Pode ser inclusive estudado um esquema de memórias do tipo "cache" entre os minicomputadores e o banco de da dos central, à semelhança das usadas no IBM 1360.
 - As memórias básicas das unidades devem ser pequenas (por rém suficientes, é claro) e rápidas, sendo aconselhado o uso de memórias à semicondutores.
- i) Pouca sofisticação de circuitos aritméticos e lógicos.
- j) Computadores de telemetria e controle do "display" de dados baratos e do menor tamanho possível. Computador de controle pouco mais complexo.

- k) Computador extra em " backup " para o de controle.
- 1) Possibilidade de fácil incorporação de novos elementos na rede e expansão indefinida do banco de dados principal.

29 de fevereiro de 1972

BIBLIOGRAFIA

- A) Westinghouse Eletric Corp. "Redac 70 data acquisition and Control Systeme", PDL 40 500 4 December 1971.
- B) Fielcler H.J. "Load Frequency Centrol & Economic Dispatching". System Automation Operation, General Eletric Comp. April 1965.
- C) Loskutov V. "Mathematical Control Machines " Peace Publishers, Moskow USSR.
- D) Gruemberg E.L. (editor) "Handbook of Teleme Try and Remote Control, "Mc Graw Hill Book Comp, 1967.
- E) IBM, Corp., "System 17 System Summary", GA34 - 0002-1, Setembro 1971.
- F) IBM, Corp., "System 17 Functional Characteristics", GA34-003, 1971
- G) Riley, W.B. Minicomputer Networks, a Challenge to maxicomputers ", Eletronics, Mardi 29, 1971.
- H) Slotnick, D.L. "The Fastest Computer", Scientific -American, February, 1971.
- I) Miller, T.H. "Power System Operation" Mc Graw Hill, 1970.

