

VI SBQEE

21 a 24 de agosto de 2005 Belém – Pará – Brasil

Código: BEL 11 7825 Tópico: Modelagem e Simulações

ALOCAÇÃO DE REATIVOS EM SISTEMAS DE FILTRAGEM PASSIVA

LUÍS CARLOS ORIGA DE OLIVEIRA

LÍDIA LUCIANA RAVAGNANI

FEIS-UNESP

RESUMO

Apresenta-se uma metodologia para auxílio no dimensionamento de sistemas de filtragem passiva baseada na distribuição otimizada da potência reativa capacitiva entre os diferentes ramos do sistema de filtragem. O procedimento de otimização é fundamentado em critérios de minimização da distorção harmônica total, utilizando-se um modelo simplificado do sistema de representado pelas filtragem suas transmitâncias. Desenvolveu-se um aplicativo computacional na forma de planilha em ambiente Microsoft Excel ® e utilizou-se o PSpice-Orcad para validação do modelo proposto. Os resultados obtidos demonstram a importância do uso desta metodologia como uma ferramenta auxiliar no dimensionamento de sistemas de filtragem passiva.

PALAVRAS-CHAVE

Filtros passivos, filtros harmônicos ressonantes, dimensionamento, otimização.

1.0 INTRODUÇÃO

Muitos trabalhos envolvendo a aplicação de filtros passivos têm sido apresentados e tratam o assunto sob diferentes enfogues. Um aspecto particularmente tratado refere-se ao desempenho dos sistemas de filtragem, bem como aos procedimentos para o seu dimensionamento. As questões mais polêmicas estão relacionadas com a degradação da eficácia do sistema de filtragem devido as componentes harmônicas da carga não filtradas e as harmônicas presentes na tensão de alimentação. Neste contexto. discutem-se métodos para a minimização dos efeitos destas harmônicas singulares, bem como os

procedimentos para implementá-los. Descartando os procedimentos que implicam em alterações topológicas, destacam-se três possibilidades para o ajuste do desempenho da filtragem: a dessintonia dos ramos ressonantes, a sobre ou sub-compensação reativa e a redistribuição da potência reativa de compensação entre os ramos, sendo este objeto de análise deste trabalho [01]. Para a definição da melhor distribuição de potência reativa entre os ramos sintonizados, a maioria dos trabalhos adota métodos de aproximações sucessivas na busca da solução mais adequada. Neste contexto, utilizam-se, em geral, simulações computacionais no domínio do tempo, o que, invariavelmente, requer um grande esforço computacional e um processo exaustivo de tentativa e erro.

Em contrapartida, outros trabalhos têm tratado o assunto através de procedimentos de otimização para identificar as melhores soluções para a distribuição da potência reativa capacitiva, tendo como objetivo a maximização do desempenho do sistema de filtragem, [02], [03], [04].

2.0 MODELO

A eficácia de um filtro harmônico ressonante pode ser avaliada através de modelos computacionais no domínio do tempo ou da fregüência [02]. Os modelos no domínio do tempo visualização permitem uma imediata do comportamento do sistema quanto às formas de onda de tensões e correntes, entretanto não revelam as causas da diminuição da eficácia do filtro. Os resultados obtidos são válidos apenas para uma condição operacional particular, e diante de qualquer alteração nas condições de funcionamento uma nova simulação deve ser iniciada. Este processo normalmente exige grande esforço computacional e torna a análise lenta e trabalhosa [02], [03].

Uma forma alternativa para esta investigação é o uso de metodologias baseadas no cálculo das transmitâncias e suas respectivas respostas em freqüência [02], [03]. Este procedimento está fundamentado na teoria da superposição de efeitos e é particularmente atrativo porque viabiliza a investigação individual da influência de diferentes parâmetros na eficácia do filtro. Permite também investigar de forma sistemática as possíveis causas da degradação da eficácia e identificar soluções alternativas para manter o desempenho do filtro dentro de limites aceitáveis. Para isto, considerou-se o circuito equivalente simplificado unifilar no barramento de conexão do filtro harmônico ressonante (FHR), conforme figura 1.

Figura 1- (a)- Circuito unifilar; (b) - Circuito equivalente.

Uma vez representadas as não-linearidades por fontes de corrente e tensão, os efeitos de cada ordem harmônica são computados individualmente e integralizados a partir do princípio da superposição.

Os símbolos Z_s, Z_i e Z_f representam as impedâncias complexas equivalentes do sistema, da carga e do filtro, respectivamente. Os símbolos e e u representam os valores instantâneos da tensão do sistema de distribuição e da tensão na carga, respectivamente, enquanto i e j_d denotam os valores instantâneos da corrente de alimentação e da parcela distorcida pela da corrente absorvida carga, respectivamente.Os valores instantâneos da hésima componente harmônica desses valores são denotadas por e_h , u_h , $i_h e_{j_h}$, respectivamente. A dependência entre as harmônicas da corrente de alimentação i_h, as harmônicas da tensão de barramento da carga u_h , as harmônicas da corrente de carga j_h e as harmônicas de tensão do sistema de alimentação e_h podem ser expressas em termos de quatro transmitâncias.

O efeito da corrente harmônica da carga j_{ω} , sobre a corrente total de alimentação i_{ω} , é representado pela transmitância B_{ω} , conforme equação 01.

$$B_{\omega} = \frac{i_{w}}{j_{w}} = \frac{Z_{a\omega}}{Z_{s\omega} + Z_{a\omega}}$$
(01)

sendo:
$$Z_{a\omega} = \frac{Z_{f\omega}.Z_{l\omega}}{Z_{f\omega} + Z_{l\omega}}$$

A relação entre as harmônicas da tensão de alimentação, e_{ω} , e as harmônicas da tensão na carga, u_{ω} , é definida pela transmitância A_{ω} , conforme equação 02.

$$A_{\omega} = \frac{u_{w}}{e_{w}} = \frac{Z_{a\omega}}{Z_{s\omega} + Z_{a\omega}}$$
(02)

Por outro lado, as harmônicas na corrente de alimentação, i_{ω} , podem também ocorrer devido a distorção na tensão de alimentação do sistema de distribuição, e_{ω} . Esta relação é expressa pela admitância equivalente "vista" pelo barramento de alimentação, conforme equação 03.

$$Y_{x\omega} = \frac{i_{\omega}}{e_{\omega}} = \frac{1}{Z_{x\omega} + Z_{a\omega}}$$
(03)

A quarta transmitância refere-se ao efeito das harmônicas da corrente de carga, j_{ω} , nas harmônicas da tensão na carga , u_{ω} , e pode ser obtida a partir da impedância "vista" pelo barramento da carga, a partir da qual obtém-se a equação 04.

$$Z_{Y_{\omega}} = \frac{u_{\omega}}{j_{\omega}} = \frac{Z_{s\omega} Z_{a\omega}}{Z_{s\omega} + Z_{a\omega}}$$
(04)

A análise da resposta em freqüência das transmitâncias descritas nas equações de 01 a 04 permite investigar, de forma aproximadamente desacoplada, os efeitos individuais das harmônicas da tensão de alimentação e da corrente de carga, sobre a corrente total do sistema e a tensão no barramento da carga.

Apresentam-se a seguir alguns resultados obtidos por simulação digital a partir do aplicativo desenvolvido.

Os dados do sistema teste escolhido são apresentados na tabela 1. O sistema de filtragem é composto por três braços de filtros sintonizados nas harmônicas de 5^a, 7^a e 11^a ordens, conforme ilustrado na figura 2.

DADOS DO SISTEMA ALIMENTADOR E D CARGA	A	
Tensão nominal do sistema (pu)	1,0	
Freqüência nominal (Hz)	60	
Relação X/R no ponto de acoplamento (PAC)	5	
Nível de curto-circuito no PAC / Potencia ativa da carga	40	
Potência aparente nominal na carga (pu)	1,0	
Tensão no ponto de acoplamento (pu)	1,0	
Fator de deslocamento na carga	0,71 0	

Tabola 1 Dados do sistema testo

Figura 2 – Sistema com carga não-linear e FHR.

Os resultados iniciais obtidos através do aplicativo desenvolvido encontram-se ilustrados na tabela 2. O dimensionamento dos braços do sistema de filtragem foi realizado admitindo-se a compensação total do fator de deslocamento, originalmente fixado 0,71 indutivo, para unitário.

VARIÁVEIS CALCULADAS		
Nível de curto-circuito no PAC	28,4	
Impedância de Curto-circuito no PAC (pu)	0,035	
Indutância do sistema no PAC (H)	9,16E-05	
Potência ativa na carga (pu)	0,710	
Potência reativa na carga (pu)	0,704	
Indutância da carga (H)	1,87E-03	
Nível de compensação do fator de deslocamento	100	
Potencia reativa para compensação (pu)	-0,704	

A título de ilustração, a potência reativa necessária para esta compensação foi dividida preliminarmente de forma equitativa entre os braços sintonizados (Fd = 33,3%). Em seguida, fixando-se o fator de qualidade dos reatores em 50, procedeu-se o cálculo dos indutores de sintonia para 5^a, 7^a e 11^a ordens harmônicas, conforme tabela 3.

Tabela 3 - Dimensionamento dos braços do filtro

Dimensionamento dos filtros	Braço 1	Braço 2	Braço 3
Fator de qualidade dos reatores	50	50	50
Fator de contribuição Fd (%)	33,33	33,33	33,33
Ordem harmônica de sintonia	5	7	11
Potência reativa capacitiva (pu)	-0,235	-0,235	-0,235
Capacitância (µF)	623	623	623
Indutância (mH)	0,45	0,23	0,93
Resistência (pu)	9,04E-06	4,61E-06	1,87E-06

Nestas condições, apresenta-se na figura 3 comportamento das transmitâncias A_{ω} e B_{ω} em

função da freqüência, onde podem ser identificadas as freqüências de sintonia bem como as ressonâncias série.

Com o objetivo de promover a validação dos resultados obtidos pelo programa desenvolvido, utilizou-se paralelamente o *Orcad-Pspice* @ para obtenção das formas de onda de tensão e corrente. O circuito equivalente implementado no ambiente *Pspice* @ é ilustrado na figura 4.

Figura 3 - Magnitudes das transmitâncias A_o e B_o.

Figura 4 – Circuito equivalente no ambiente PSpice® .

Apresenta-se a seguir um dos casos dentre os vários simulados, no qual as distorções da tensão de alimentação e da corrente de carga são, respectivamente, 3,2% e 28,4%.

Tabela 4 - Conteúdo harmônico considerado

Ordem	Tensão de alimentação		Correntes na carga	
h	Módulo(% e ₁)	Fase(grau)	Módulo(% J ₁)	Fase(grau)
1	100,0	0,0	100,0	-44,8
3	2,0	-30,0	3,0	0,0
4	0,0	0,0	0,0	0,0
5	1,5	0,0	20,0	0,0
7	1,2	0,0	15,0	-20,0
9	0,9	0,0	5,0	0,0
11	1,0	0,0	9,0	0,0
13	1,0	0,0	8,0	-45
DHT(%)	3,20		28,40	

A composição das formas de onda das tensões e correntes obtidas pelo método das transmitâncias é apresentada na figura 5 (a). Na figura 5 (b) são apresentados os resultados da simulação em ambiente PSpice.

Comparando-se os resultados, foi possível constatar o bom desempenho do aplicativo computacional desenvolvido. Objetivando, pois, sistematizar o processo de análise, as investigações subseqüentes foram efetuadas apenas a partir da metodologia proposta.

3.0 DIMENSIONAMENTO DA FILTRAGEM

O dimensionamento dos sistemas de filtragem passiva pode ser um processo muito exaustivo [01]e compreende várias etapas. Inicialmente, um grande número de informações relativas ao cenário onde se pretende instalar o sistema de filtragem devem ser reunidas, destacando-se o conhecimento detalhado do sistema alimentador no PAC, as distorções harmônicas produzidas pelas cargas não-lineares, a distorção harmônica na tensão de alimentação e a potência reativa a ser compensada. Na seqüência, baseado no espectro e nas amplitudes das harmônicas a serem filtradas, define-se um arranjo preliminar do sistema de filtragem, ou seja, o número de bracos sintonizados е suas respectivas freqüências de sintonia, que normalmente são fixadas para as ordens harmônicas predominantes. Em uma etapa posterior, procede-se o cálculo e o ajuste dos parâmetros dos filtros, ou seja, das indutâncias, capacitâncias e do fator de qualidade do reator. Nesta etapa, vários fatores podem ser considerados na busca de solucões que promovam 0 melhor desempenho o sistema de filtragem.

Como a maioria das instalações necessita de compensação reativa, cada braço sintonizado pode prover parte da energia reativa, pois sua característica é capacitiva à freqüência industrial. Neste contexto, um importante aspecto a ser avaliado é como a potência reativa de compensação deve ser distribuída entre os braços do sistema de filtragem.

A mudança no nível da potência reativa alocada para ramificações particulares do filtro é o mais efetivo método para modificação das transmitâncias do filtro [01], [05] e conseqüentemente da sua eficiência sob o ponto de vista da minimização das distorções harmônicas totais.

Analisando-se as expressões de 01 a 04, todas as transmitâncias observa-se que apresentam um denominador comum dado pela impedância total equivalente $Z_{T\omega} = Z_{s\omega} + Z_{a\omega}$. Nas freqüências de ressonância com o sistema de alimentação, a reatância equivalente $X_{T_{eq}}$ é nula e o denominador resume-se apenas à resistência equivalente R_{Tw}. Esta resistência é relativamente baixa e, nestas condições, as magnitudes das transmitâncias são elevadas. Para freqüências diferentes das freqüências de ressonância, impedância esta pode ser aproximada apenas pela reatância, conforme mostra a equação 05.

$$X_{T\omega} = X_{s\omega} + X_{a\omega} \tag{05}$$

Nestas condições, é possível demonstrar [12] que a variação da reatância X_{aco} em torno da freqüência de sintonia do braço *i* pode ser determinada pela expressão 06 [01].

$$\frac{dX_{a\omega}}{d\omega}\Big|_{\omega=\omega i} = \frac{2U^2}{\omega_{rede}(h_i^2 - 1)} \frac{1}{k_i Q}$$
(06)

Observa-se pela equação 06, que a taxa de variação da reatância equivalente em torno da freqüência de sintonia de cada braço é inversamente proporcional a quantidade de reativos alocados nos respectivos braços. Uma redução na reatância $X_{a\omega}$ altera isoladamente as freqüências de ressonâncias paralelas em torno da freqüência de sintonia, bem como as freqüências das ressonâncias série com o sistema de distribuição $X_{s\omega}$.

A figura 6 ilustra a variação de $-X_{s\omega}$ e $X_{a\omega}$ em função da freqüência para o sistema de filtragem ilustrado na tabela 3, onde a potência reativa foi dividida equitativamente entre os braços sintonizados.

A figura 7 mostra o novo comportamento com 70% de potência reativa de compensação alocada para o braço sintonizado para a 7ª ordem, 20% no braço de 5ª ordem e 10% no braço de 11ª ordem . Em torno da 7ª harmônica observa-se uma diminuição da inclinação devido ao aumento da potência reativa alocada de 33% para 70%. Em torno da 5ª harmônica ocorre um pequeno aumento da inclinação decorrente da alteração de 33% para 20%. O mesmo acontece em torno da 11ª harmônica, onde se observa um aumento significativo da inclinação de $X_{a\omega}$, uma vez que a potência reativa alocada foi reduzida para menos de um terço do seu valor original.

3.1 Resultados simulados

Visando a melhoria do desempenho da filtragem, vários trabalhos utilizam métodos de refinamento dos parâmetros do filtro baseados em simulações digitais envolvendo diferentes cenários para identificar a solução mais adequada. Este procedimento demanda, normalmente, muito tempo de simulação e análise e, muitas vezes, ainda não apresentam resultados satisfatórios. Neste sentido, o uso de uma metodologia de otimização das transmitâncias pode não só produzir melhores resultados, mas também diminuir substancialmente o tempo necessário no dimensionamento do sistema de filtragem.

Admitindo-se, como base de referência, uma distribuição equitativa da potência entre os braços do filtro e as fontes harmônicas dadas na tabela 5, foram obtidos os resultados ilustrados na figura 8 (a) e (b), para as correntes e tensões na carga e na fonte respectivamente.

Para este caso, os espetros harmônicos das correntes e tensões são ilustrados na figura 9 (a) e (b).

Nestas condições, as harmônicas não filtradas (singulares) degradam o desempenho do sistema de filtragem e as distorções harmônicas nas correntes de alimentação e no barramento de carga ainda permanecem elevadas. Particularmente, este fato se deve principalmente a amplificação das harmônicas singulares de 3^{a} , 6^{a} e 9^{a} ordens, conforme ilustra a figura 9.

Tabela 5 - Conteúdo harmônico considerado.

Ordem	Tensão de alimentação (E)		Corrente na carga (J)	
Н	Módulo (%)	Fase (graus)	Módulo (%)	Fase (graus)
1	100,0	0,0	100,0	-44,8
3	2,0	-30,0	3,0	0,0
5	1,5	0,0	20,0	0,0
6	0,3	0,0	2,0	0,0
7	1,2	0,0	15,0	-20,0
9	1,5	0,0	5,0	0,0
11	1,0	0,0	9,0	0,0
13	1,0	0,0	8,0	-45,0
DHT(%)	3.47	-	28 43	-

Figura 8 – Distribuição equitativa (– tensão, - corrente)

Figura 9 – Espectros harmônicos – distribuição equitativa.

3.2 Otimização da filtragem

O processo de otimização adotado visa a minimização da função descrita na equação 07, composta pelas taxas de distorção de corrente δ_i e de tensão δ_u devidamente ponderadas.

$$f(x) = PI.\delta_i + PT.\delta_u \tag{07}$$

sendo: PI e PT - fatores de peso.

As grandezas envolvidas no cálculo dos fatores de distorção da equação 07 dependem dos parâmetros do sistema alimentador, dos espectros da corrente da carga e da tensão de alimentação. A análise desenvolvida neste trabalho é realizada admitindo-se um cenário específico onde apenas a redistribuição das capacitâncias do sistema de filtragem é variante. As indutâncias de sintonia são determinadas a partir das capacitâncias otimizadas alocadas por braço, em função das ressonâncias préestabelecidas para o sistema de filtragem.

A solução numérica de minimização da equação 07 foi obtida com auxílio do aplicativo de otimização "SOLVER" disponível no ambiente de programação Microsoft® Excel 2000, [06].

Para a solução de problemas não-lineares, o Microsoft Excel Solver utiliza um código baseado no método de otimização de gradiente reduzido genérico (GRG2), desenvolvido por *Leon Lasdon*, da Universidade do Texas em Austin e *Allan Waren*, da Universidade Estadual de Cleveland.

Os resultados obtidos a partir da técnica descrita são apresentados na tabela 6. Os parâmetros L e C dos filtros sintonizados são obtidos a partir da distribuição otimizada da potência reativa de compensação nas seguintes proporções: 53,2% no braço sintonizado na 5ª ordem, 32,6% no braço de 7ª ordem e o restante no braço de 11ª.

Dimensionamento dos filtros	braço 1	braço 2	braço 3
Fator de qualidade	50	50	50
Fator de distribuição Fd (%)	53,16	32,62	14,22
Ordem harmônica de sintonia	5	7	11
Potência reativa capacitiva (pu)	-0,374	-0,230	-0,100
Capacitancia (µF)	993	609	266
Indutância (mH)	0,280	0,236	0,219
Resistência (pu)	5,67E-06	4,71E-06	4,38E-06

As figuras 10 e 11 apresentam as tensões e correntes, bem como seus respectivos espectros harmônicos.

Observa-se, comparando-se os conteúdos harmônicos residuais ilustrados nas figuras 9 e 11, uma sensível melhora no desempenho do sistema de filtragem, propiciado principalmente pela atenuação das harmônicas de 6 e 9 ordens. O procedimento de otimização abordado neste trabalho dispensa não outras acões tradicionalmente empregadas no projeto dos filtros. Entre elas, detacam-se a dessintonia, ajuste do fator de qualidade dos reatores, sobre ou subcompensação de reativos além de uma análise criteriosa das particularidades da carga e do sistema de suprimento. Neste sentido, a busca de solucões mais refinadas compreende,

portando, a utilização simultânea de todas as técnicas citadas e ainda direcionadas para o uso de valores comerciais de capacitâncias.

4.0 CONCLUSÕES

Foram apresentadas propostas para um dimensionamento adequado. obietivando а maximização do desempenho operacional de um sistema de filtragem passiva. O processo adotado consiste na distribuição ótima da potência reativa capacitiva total associada à correção do fator de deslocamento entre os diferentes braços de filtros sintonizados, embora outros mecanismos, tais como a dessintonia devam ser utilizados isoladamente ou em conjunto. Para isto, foram utilizadas rotinas específicas de otimização disponíveis na plataforma de desenvolvimento Microsoft Excel 2000. Os resultados obtidos são expressivos e demonstram claramente а importância do uso de uma metodologia de otimização para a busca de soluções mais atrativas para o auxílio no dimensionamento dos sistemas de filtragem. A utilização desta metodologia evita o uso do método convencional baseado em tentativa e erro, pois, além de ser um processo exaustivo e lento, nem sempre produz resultados satisfatórios.

5.0 BIBLIOGRAFIA

- [01] Ravagnani,L.L.-" Dimensionamento Otimizado de Filtros Passivos". Dissertação de Mestrado, FEIS–UNESP, Ilha Solteira, 2004.
- [02] Czarnecki, L.S.; Ginn H. "Effectiveness of resonant harmonic filters and its improvement," Proc. of the 2000 IEEE PES Summer Meeting, Seattle, USA.
- [03] Czarnecki, L.S. "Effects of minor harmonics on the performance of resonant harmonic filters in distribution systems," Proc. IEE, Electric Power Appl., Vol. 144, No. 5, September 1997.
- [04] Wu C.J, at alli "Investigation and mitigation of harmonic amplification problems caused by single-tuned filters", IEEE Trans. On Power Delivery, Vol.13, N.3, Jully 1998.
- [05] Bonner J. A, at alli, "Selecting ratings for capacitors and reactors in applications involving multiple single-tuned filters", IEEE PES Society 1994 Summer Meeting.
- [06] Dodge M.; Stinson, C. "Excel2000, Manual de Referência" Makron Books 2001.