Desenvolvimento de Sistema de Gerenciamento e Controle de Dados e Parâmetros Elétricos de Linhas de Transmissão

L. C. Zanetta Jr, C. E. M. Pereira e E. Fontana

Resumo- O objetivo do projeto é a implementação de um aplicativo para controle de dados e parâmetros elétricos de linhas de transmissão da Cteep. O aplicativo desenvolvido facilita as tarefas de consulta, cálculo e alteração de parâmetros de linha além de permitir o cálculo a partir de medições realizadas pelo SSC (Sistema de supervisão e controle). O aplicativo permite comparações dos parâmetros calculados teoricamente com os parâmetros presentes nos arquivos de entrada dos programas Anarede e Anafas e fornece como dados de saída modelos das linhas para esses programas e também três modelos para o programa ATP.

Palavras-chave—Linhas de transmissão, parâmetros de linha, cálculo experimental.

I. INTRODUÇÃO

A metodologia utilizada foi inicialmente realizar um levantamento bibliográfico sobre métodos de obtenção de parâmetros de linha de transmissão a partir de medições elétricas nos terminais da linha.

Além de alguns métodos vistos nesse levantamento foram propostos alguns métodos que foram avaliados a partir de informações de tensão e corrente calculadas teoricamente. Os métodos eram baseados no equacionamento das grandezas elétricas da linha por meio de quadripólos com a solução das equações, para a obtenção dos parâmetros, sendo feita por otimização, método dos mínimos quadrados ou solução de sistemas de equações não lineares.

Uma característica comum dos métodos propostos é a não necessidade de que as medições de tensão e corrente não estejam sincronizadas já que o SSC fornece dados sem sincronização.

Para avaliar a robustez dos métodos, já que para medições exatas (medições calculadas teoricamente) todos os métodos foram exatos, foi feito um estudo com essas medições sendo acrescidas de erros calculados teoricamente.

A segunda fase do projeto foi o desenvolvimento do aplicativo para controle do banco de dados de linhas da Cteep. Esse aplicativo foi elaborado com a versão livre Turbo Delphi da Borland.

O aplicativo permite a consulta e cálculo de parâmetros de linha, além de comparação de parâmetros com decks de Anarede e Anafas. O aplicativo fornece como dados de saída, além dos parâmetros da linha, os modelos para uso nos programas Anarede, Anafas e ATP, sendo que para o ATP podem ser escolhidos três diferentes modelos para a linha, incluindo o modelo com parâmetros variáveis com a freqüência.

O algoritmo de cálculo experimental de parâmetros incorporado ao aplicativo foi testado a partir de conjuntos de medições realizadas pelo SSC. Os resultados obtidos foram suficientemente satisfatórios, dentro de hipóteses simplificadoras que tiveram que ser adotadas.

II. METODOLOGIA DO APLICATIVO

O aplicativo foi desenvolvido para o ambiente Windows na linguagem Delphi, usando a versão livre Turbo Delphi e a linguagem SQL, o banco de dados das linhas da Cteep será parcialmente montado, mas os parâmetros deverão ser calculados conforme a necessidade, devendo também ser ajustados dados como nome e numeração de barras para os programas Anarede e Anafas e as coordenadas das barras para a exibição de mapa das as linhas.

O aplicativo tem os recursos básicos divididos em telas especificas:

- Entrada, consulta de dados e cálculo de parâmetros das linhas
- Entrada e consulta de dados de barras
- Entrada e consulta de dados de condutores e cabos-guarda
- Entrada e consulta de dados de torres
- Visualização de mapas
- Comparação de parâmetros
- Cálculo de parâmetros a partir de medições

O aplicativo foi desenvolvido de forma a facilitar o controle dos dados e parâmetros de forma simples e intuitiva e fornecendo o modelamento das linhas para utilização nos programas Anarede, Anafas e ATP.

A. Modelo do banco de dados

A tabela principal do banco é a tabela de linhas, que se relaciona diretamente com a tabela de condutores, que contém os condutores e cabos-guarda e com a tabela de torres.

Este trabalho foi desenvolvido no âmbito do Programa de Pesquisa e Desenvolvimento Tecnológico do Setor de Energia Elétrica regulado pela ANEEL e consta dos Anais do V Congresso de Inovação Tecnológica em Energia Elétrica (V CITENEL), realizado em Belém/PA, no período de 22 a 24 de junho de 2009.

Este trabalho foi financiado pela Cteep – Companhia de Transmissão de Energia Elétrica Paulista.

L. C. Zanetta Jr trabalha no LSP-USP Laboratório de Sistemas de Potência da Escola Politécnica da USP (e-mail: lzanetta@pea.usp.br).

E. Fontana trabalha na Cteep – Companhia de Transmissão de Energia Elétrica Paulista.

A segunda tabela mais importante é a tabela de_para, permitindo a solução do problema de a linha poder ser de circuito simples ou duplo, sendo que no caso de circuito duplo, a linha pode estar ligada a duas, três ou quatro barras.

Fig. 1. Modelo do banco de dados.

B. Método experimental adotado

O algoritmo implementado no aplicativo é o apresentado no item 2.1 da nota técnica 2, que por facilidade é apresentado resumidamente a seguir.

A figura 8.2 representa o modelo π da linha e os fasores não sincronizados.

Fig. 2. Linha de transmissão- modelo π .

Esse método direto foi desenvolvido para usar medição sincronizada de fasores, no entanto o sistema de supervisão e controle fornece dados não sincronizados dos dois terminais da linha, sendo necessário fazer a sincronização dos dados dos dois terminais da linha.

A defasagem entre os dois terminais é tratada como um ângulo, não como tempo, podendo-se escrever:

$$V_{R}^{\prime} = V_{R} e^{-j\theta}$$

$$I_{R}^{\prime} = I_{R} e^{-j\theta}$$
(1)

que são os fasores de tensão e corrente do terminal remoto sincronizados:

A defasagem pode ser calculada com a seguinte expressão:

$$\theta = \operatorname{Re}\left(j \ln\left(\frac{V_L - (r + jx) \ell I_L}{V_R}\right) \right)$$
(2)

Onde os valores de r e x devem ser os do projeto da linha (calculados a partir da geometria da torre e da resistividade do solo medida ou estimada).

Essa expressão considera o modelo de linha impedância série (π nominal sem capacitâncias: A=1, $B=(r + jx) \ell$:

Os parâmetros de sequência positiva podem ser obtidos

utilizando-se as seguintes expressões [1], onde se calculam inicialmente a impedância característica e a constante de propagação:

$$Z_{c} = \sqrt{\frac{V_{L}^{2} - V_{R}^{\prime 2}}{I_{L}^{2} - I_{R}^{\prime 2}}}$$
(3)

$$=\frac{\cosh\left(\frac{V_L I_L - V_R' I_R'}{V_L I_R' - V_R' I_L}\right)}{\ell}$$
(4)

onde:

 V_L, V_R, I_L, I_R são os fasores de tensão e corrente e corrente nos terminais local e remoto (sincronizados) da linha; ℓ é o comprimento da linha de transmissão.

A partir de (3) e (4) pode-se obter os parâmetros por km sendo a impedância e a admitância shunt da linha da linha por unidade de comprimento dadas por:

$$z = \gamma Z_c \quad \text{e} \quad y = \frac{\gamma}{Z_c} \tag{5}$$

O sistema de supervisão e controle fornece as seguintes informações:

• data e hora da medição

γ

- V_L, V_R Tensões nos terminais local e remoto: kV eficaz de linha (módulo)
- Tensão no terminal: kV eficaz de linha (módulo)
- P_L , P_R , Q_L e Q_R Potências ativas e reativas nos terminais local e remoto (MW e MVAr)

A partir desses valores calculam-se as tensões de fase nos terminais e as correntes de linha.

$$V_{L} = \frac{V_{L}}{\sqrt{3}}, V_{R}' = \frac{V_{R}}{\sqrt{3}} e^{-j\theta},$$
$$I_{L} = \left(\frac{P_{L} + jQ_{L}}{\sqrt{3}V_{L}}\right)^{*}, I_{R}' = \left(\frac{P_{R} + jQ_{R}}{\sqrt{3}V_{R}}\right)^{*} e^{-j\theta}$$

III. Aplicativo Desenvolvido

O aplicativo é de fácil utilização e os recursos são divididos por telas conforme apresentado a seguir:

- Controle de dados de linha
 - Consulta / Alteração / Inclusão / Exclusão
 - Cálculo de parâmetros
 - Montagem arquivo Line Constants
 - o Execução do programa ATP
 - o Leitura do arquivo de saída do Line Constants
 - Montagem de trechos de arquivo para os programas Anarede, Anafas e ATP
 - Busca de linhas
- Controle de dados de barra, condutores e torres
 - Consulta / Alteração / Inclusão / Exclusão
- Comparação de dados
 - Seleção de decks Anarede e Anafas
 - Busca de linhas
- Visualização do mapa das linhas
- Seleção por tensão
- Escolha do "zoom"
- Visualização de dados básicos de barra e de linha
- Cálculo de parâmetros usando medições P,Q,V

- Seleção do arquivo de medições
- Busca da linha correspondente no banco de dados
- Cálculo dos parâmetros a partir das medições

A. Dados de Linhas

A tela inicial do programa é a seguinte.

Fig. 3. Tela de dados de linhas.

- As funções realizadas nessa tela são as seguintes:
- Busca detalhada de linhas
- Escolha da forma de ordenação da lista de linhas
- Inserção, eliminação e alteração de linha
- Cálculo de parâmetros da linha
- Escolha dos tipos de saída para os aplicativos elétricos

1) Busca detalhada de linhas

A busca de linhas é feita a partir dos critérios: trecho do nome de barras De e Para, tensão, torre, comprimento, condutor e cabo-guarda. Pode ser feita qualquer combinação de campos.

Um exemplo de busca seria localizar a linha Araraquara-Bauru 440, que pode ser feita por exemplo da seguinte forma, não importando a ordem de De e Para:

Busca Linna
Tensão 💶 💌
De ara
Para bau
Compr mín (km)
Compr máx (km)
Torre qualquer 💌
Condutor qualquer 💌
C. Guarda qualquer 💌
Limpa Busca
Ordena por
 Identificação <<
○ Identificação >>

2) Inserção de linha

Para incluir uma nova linha no banco de dados usa-se o botão insere linhaque carrega a tela de escolha de dados básicos da linha:

👹 Nova linha	
Tensão da Linha	Tipo Circuito
C 69	• duplo
C 88	C simples
• 138	
C 230	
C 345	Confirma
C 440	Cancela
	Cancela

A partir da escolha são selecionadas as barras e torres que poderão ser utilizadas. Para esse caso, seriam disponibilizadas para escolha as torres permitidas para a tensão 138 kV com circuito duplo e as barras de 138 kV.

Geral	
Identif. 668	compr (km) 50
Rho (Ohm.m)	
Torre principal	3: 230 s 💌
Tensão	230 💌
Condutor	Oriole 💌
N Bundle	Esp Bund (cm)
Flecha cond (m)	
Cabo Guarda	3/8" Aço 💌
Flecha cg (m)	
Datas operação	

A numeração da linha é criada automaticamente e o usuário deve em seguida definir as seguintes informações, ou preenchendo diretamente ou escolhendo nas caixas de combinação.

Barras					
De (circ 1)	BOTUCATU_230	-	Para (circ 1)	ASSIS 1_230	·
	BOTUCATU_230				
	E.SOUZA1_230	-			
	CABREUVA_230	=			
	CBA 1_230				
	CBA 2_230				
0 000 0 000	CABREUV2_230			0.0	🔽 Ana
	E.SOUZA2 230				
	CABREUV3_230	-			🔽 Ana

Após a definição de todos os dados deve-se gravar as informações no banco de dados e calcular os parâmetros.

3) Cálculo de parâmetros da linha

Deve-se usar o botão *calcula parâmetros* para calcular os mesmos quando não estão sendo exibidos, o que acontece após alteração de dados da linha ou criação de uma linha nova.

O cálculo de parâmetros é feito pela rotina line constants do programa ATP, que é chamado automaticamente pelo aplicativo ParLin.

O aplicativo lê o arquivo de saída do Line Constants para exibir os parâmetros, gravar no banco de dados e exibir o tipo de saída selecionado pelo usuário, como trechos de decks dos programas Anarede e Anafas.

4) Escolha dos tipos de saída para os aplicativos elétricos

Uma das aplicações do programa é fornecer dados de entrada para aplicativos elétricos como Anarede, Anafas e ATP. Para escolha dos trechos de dados de entrada desses programas que serão fornecidos, são utilizados os seguintes controles:

Entrada P	ogramas (Visualização)	
DLIN	A	✓ Anarede
(De) 0	(Pa)NcEP (R%) (X%) (Mvar) (Tap) (Tmn) (Tmx) (Phs) (Bc) (Cn) (Ce)Ns	Analas
1001	1002 1 0.362 4.59307.81 803 803	 Analas
1003	1004 2 0.362 4.59307.81 803 803	ATP
9999	E	
		Opções ATP
37		Transposta
(BF C	BT NC T R1 X1 R0 X0 CN IADEF KM	- Hampona
(> #	< x x x x x x x x x x x x x x x x x x x	C Não Transposta
2001	2002 1 0.362 4.59 5.35318.379 297.	
2003	2004 2 0.362 4.59 5.35318.379 297.	C Variação com a freqüência
9999		
39		
(BF1 C	BT1 NC1 BF2 BT2 NC2 RM XM IA	Elimina Cabo-Guarda (ATP)
(> #		

O caso anterior é a linha Araraquara – Santo Ângelo 440, em que se vê na tela os dados de linha para o Anarede (DLIN) e um trecho de dados de linha do Anafas.

A seguir o trecho completo para o Anafas, onde se vê os dados de mútua de seqüência zero, já que se trata de linha de circuito duplo:

37 (37) (37) CT R1 X1 R0 X0 CH (37) CT R1 X1 R0 X0 CH (37) CT R1 X1 R0 X0 CH (37) CT R1 X1 R0 X0 CH 2003 2004 1 0.362 4.59 5.35318.379 39 39 39 39 39 39 39 39 30 30 4.59 5.35318.379 39 39 39 30 30 4.59 5.35318.379 39 39 39 39 30 30 4.59 5.35318.379 39 39 30 4.59 5.35318.379 39 39 30 4.59 5.35318.379 39 39 39 30 4.59 5.35318.379 39 39 39 30 4.59 5.35318.379 39 39 39 30 4.59 5.35318.379 39 39 39 39 30 4.59 5.35318.379 39 39 39 39 30 4.59 5.35318.379 39 39 39 39 39 30 4.59 5.35318.379 39 39 39 39 30 4.59 5.35318.379 39 39 39 39 30 4.59 5.35318.379 39 39 39 39 39 30 4.59 5.35318.379 39 39 39 30 4.59 5.35318.379 39 30 4.59 5.35318.379 39 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.35318.379 30 4.59 5.55 5.55 5.55 5.55 5.55 5.55 5.55	IADEF PM ↔ > < > 297. 297. IA ↔ 1	
---	---	--

No caso do programa ATP, o modelo básico é o de linha transposta com redução (eliminação) dos cabos guarda, sendo o modelo o seguinte:

Entrada Programas (Visualização)						
/BRANCH					~	Anarede
C < n 1>< n 2> <ref1><ref2>< R \$VINTAGE,1</ref2></ref1>	ohm/km ≻ X	ohm/km ≻ Y	uS/km ≻< co	mpr km ><><><>		☐ Anafas
-1ARARAASANGEA	0.388480	1.257000	2.795012	296.70 0 0 0		ATP ATP
-2ARARABSANGEB	0.024830	0.307000	5.294463	296.70 0 0 0		
-SARARACSANGEC	0.362280	0.778000		296.70 0 0 0		Oppões ATP
-4ARARADSANGED				0		 Transposta
-SARARAESANGEE				0		
- 6ARARAFSANGEF				0		C Não Transposta
\$VINTAGE,0						
						C Variação com a freqüência
						C Electric Cable Counds (MTD)
						P cimina capo-Guarda (ATP)
					~	

Uma vantagem do aplicativo é que são incluídos as dados d

a mútua de seqüência zero.

B. Dados de Barras

A seguir a tela de controle de dados de barras.

	unhas	Mapa Co		a Mgdição Ajudi	rorres 崎 Mapa	Compare	м 🔐 м	sdições				
	R	< 🕨		►I Insere Ap	ego Altera							
	dentif.	Tensão (kV)	Tipo	Nome	Nome Anarede	Nome Anafas	Nome ATP	Núm Anarede	Núm Anafas	Coord X	Coord Y 🔺	Tensão da Barra
	1	44	Ъ	ARARAQU1_440	ARARAQU1_440	ARARAQU1_440	ARARA	1001	2001	1445	767	(+ Uualquer
	2	44	ь	SANGELD1_440	SANGEL01_440	SANGEL01_440	SANGE	1002	2002	1973	1285	C 69
	3	44	Ъ	ARARAQU2_440	ARARAQU2_440	ARARAQU2_440	ARARA	1003	2003	1445	767	C 88
	4	44	ь	SANGELD2_440	SANGEL02_440	SANGEL02_440	SANGE	1004	2004	1973	1285	C 138
	5	44	J y	MMIRIM3Y_440	MMIHIM3Y_440	MMIHIM3Y_440	MMIHI	1005	2005	1774	954	C 220
	6	44	1.0	MMIRIM31_440	MMIHIM31_440	MMIHIM31_440	MMIH	1006	2006	1774	954	2.30
	7	44	ь	MMIHIM32_440	MMIHIM32_440	MMIHIM32_440	MMIHI	1007	2007	1774	954	C 345
ł	8	44	10	BAUHU 1_440	BAUHU 1_440	BAURU 1_440	BAUHU	1008	2008	1180	882	C 440
ł	9	44	ь	CABREUVA_440	CABREUVA_440	CABREUVA_440	CABRE	1009	2009	1741	1212	
ł	10	44	Ъ	RAURU 2_440	BAURU 2_440	BAURU 2_440	BAURU	1010	2010	1180	882	Butca Bana
ł	11	44	ь	E.GUACU1_440	E.GUACU1_440	E.GUACU1_440	E.GUA	1011	2011	1787	1307	Nome
ł	12	44	Ъ	E.GUACU2_440	E.GUACU2_440	E.GUAL02_440	E.GUA	1012	2012	1/8/	1307	
ł	13	44) y	T.DESTEY_440	T.DESTEY_440	T.DESTEY_440	T.OES	1013	2013	1672	1032	
ł	14	44	Ъ	T.DESTE1_440	T.OESTE1_440	T.0ESTE1_440	T.GES	1014	2014	1672	1032	Classificação
ł	15	44	Ъ	T.0ESTE2_440	T.0ESTE2_440	T.0ESTE2_440	T.OES	1015	2015	1672	1032	Identificação <
ł	16	40	Ъ	BJARDIM1_440	BJARDIM1_440	BJARDIM1_440	BJARD	1016	2016	1784	1163	C Identificante sa
ł	17	44) y	BJARDIMY_440	BJARDIMY_440	BJARDIMY_440	BJARD	1017	2017	1784	1163	i idennicação //
Ļ	18	44	Ъ	BJARDIM2_440	BJARDIM2_440	BJARDIM2_440	BJARD	1018	2018	1784	1163	Nome <
ļ	19	44	ь	TAUBATE1_440	TAUBATE1_440	TAUBATE1_440	TAUBA	1019	2019	2178	1151	Nome>>
1	20	44	Ъ	A.SERRA1_440	A.SERRA1_440	A.SERRA1_440	A.SER	1020	2020	1855	1246	C Tensão <<
1	21	34	5 Ь	E.GUACU1_345	E.GUACU1_345	E.GUACU1_345	E.GUA	1021	2021	0	0	C Terration
l	22	34	бb	A.SERRA1_345	A.SERRA1_345	A.SERRA1_345	A.SER	1022	2022	0	0	1.31 10 10 172
1	23	34	5 Ь	E.GUACU2_345	E.GUACU2_345	E.GUACU2_345	E.GUA	1023	2023	0	0	
1	24	34	5 Ь	A.SERRA2_345	A.SERRA2_345	A.SERRA2_345	A SER	1024	2024	0	0	
1	25	44	Ъ	SUMARE 1_440	SUMARE 1_440	SUMARE 1_440	SUMAR	1025	2025	1717	1130	
1	26	44	Ъ	BJARDIM_440	BJARDIM_440	BJARDIM _440	BJARD	1026	2026	1784	1163	
1	27	44	Ъ	ISOLTEIR_440	ISOLTEIR_440	ISOLTEIR_440	ISOLT	1027	2027	563	334	
ſ	28	44	Ъ	AVERMELH_440	AVERMELH_440	AVERMELH_440	AVERM	1028	2028	819	160	11.00
ſ	29	44	Ъ	3IRMAOS_440	3IRMA0S_440	3IRMAOS_440	3IRMA	1029	2029	595	408	
ſ	30	44	Ъ	3IRMAOSS_440	3IRMAOSS_440	3IRMADSS_440	3IRMA	1030	2030	595	408	
ſ	31	44	ίь	31BMA0S 440	3 IBMA0S 440	31RMA0S 440	3 IRM	1031	2031	595	408 -	

Fig. 4. Tela de dados de barras.

As funções realizadas nessa tela são as seguintes:

- Seleção de barras por nome e/ou tensão
- Classificação da lista de barras
- Inserção, eliminação e alteração de barras

1) Seleção de barras

Da mesma forma que na busca de linhas, podem ser usados um ou mais critérios e com o nome da barra podendo ser preenchido parcialmente não importando se as letras maiúsculas ou minúsculas.

O exemplo a seguir mostra a busca visando a barra Bauru 138:

- Os tipos de barra são:
- b: subestação real
- y: derivação
- f: barra fictícia

Um exemplo de utilização de tipos de barras é o seguinte:

As barras fictícias são necessárias para que haja dois inícios e dois fins para os trechos de circuito duplo.

- C. Dados de Condutores e Cabos-guarda
- As funções realizadas nessa tela são as seguintes:
- Alteração de dados de condutores
- Classificação da lista de condutores

A seguir a tela de controle de dados de condutores e cabosguarda.

	- Gei	renciamento	de Par	âmetros de Linhas de Transr	nissão						
DS .	Saida	Mapa S	ompar	a Mgdição <u>Aj</u> uda							
Ζ.,		1000 Day		Colora 🔣 Turnel &	S	34 c		4.4			
8 "	nnas	N B Dat	85 2	Capes 10082	A waba 🖓	Compara		orboes			
	1	1	1	1 1							
× .	-	• •	M	11						_	
dent	ř.	Nome	Tipo	Descrição	Rec (0hm/km)	Dext (cm)	Dirit (cm)	MCM	Formação	^	Llassincação
	2	Drake	с	condutor 795.0 MCM 2647	0.077672	2.8143	1.036	795	26×7		Identificação
	3	Grosbeak	с	condutor 636.0 MCM 2647	0.096934	2.5146	0.921	636	26X7		
	4	Hen	с	condutor 477.0 MCM 30K7	0.12987	2.2428	0.96	477	30K7	1	C Num
	5	Otiole	c	condutor 336.4 MCM 30K7	0.1833	1.8821	0.907	336.4	360(7		* Nome
	6	Linnet	C	condutor 336.4 MCM 26K7	0.18268	1.8313	0.675	336.4	26×7		
	7	Partridge	c	condutor 266.8 MCM 2647	0.23053	1.6307	0.6	266.8	26X7		C Diâmetro externo
	8	0nl	с	condutor 266.8 MCM 6K7	0.2734	1.6078	0.6	266.8	6×7		
	9	Penguin	c	condutor 4/8 AWB 6X1	0.343	1.43	0.477	0	6×1		
	10	Quail	с	condutor 2/0 AWG 6X1	0.52195	1.1354	0.378	0	6×1		
	11	Baven	с	condutor 1/8 AWG 6K1	0.64498	1.0109	0.337	0	6X1		
	12	Spanow	с	condutor 2 AWG 6X1	0.99917	0.90264	0.267	0	6X1		
	13	Swan	с	condutor 4 AWG 6X1	1.541	0.635	0.212	0	6×1		
	14	1/0 Cobre	c	condutor	0.37655	0.93472	0	0		-	
			1	1 1							
		Mana	Tine	-/	Day (Ohrsdam)	Dave (and	Dist (see)	ucu			
dent	ł. 44	Nome	Tipo	Descrição o quiedo 12/7	Rec (Dhm/km)	Dest (cm)	Dirk (cm)	мсм	Formação	<u>^</u>	
dent	i. 44 45	Nome Almelec-AC	Tipo 9	Descrição c.guarda 1287	Roc (Dhm/km) 0.73446	Dest (cm) 1.1252	Dirk (cm) 0	MCM 0	Formação 12×7	^	
dent	1. 44 45 46	Nome Almelec-AC Alweld 7/9	Tipo g g	Descrição c.guarda 12X7 c.guarda 91.65 MCM 7X9 o auroda 91.05 MCM 12X7	Rec (Dhm/km) 0.73446 1.843 0.62262	Dest (cm) 1.1252 0.87122 1.2217	Dirit (cm) 0 0.722	MCM 0 91.65	Formação 12×7 7×9 12×7	Â	
dent	t. 44 45 46	Nome Almelec-AC Alweld 7/9 Minorca	Tipo 9 9 9	Descrição c.guarda 1247 c.guarda 91.65 MCM 7X9 c.guarda 91.65 MCM 1247 avanda 110.8 MCM 1247	Rec (Dhm/km) 0.73446 1.843 0.62262	Dest (cm) 1.1252 0.87122 1.2217	Dirk (cm) 0 0.732	MCM 0 91.65 110.8	Formação 12×7 7×9 12×7	* 	
dent	t. 44 45 46 47 49	Nome Almelec-AC Almeld 7/9 Minorca Leghom	Tipo g g g g	Descrição c.guarda 1247 c.guarda 1247 c.guarda 91.65 MCM 7X9 c.guarda 110.8 MCM 1247 c.guarda 134.6 MCM 1247 c.guarda 134.6 MCM 1247	Roc (Dhm/km) 0.73446 1.843 0.62262 0.52506	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027	Dint (cm) 0 0.732 0.807	MCM 91.65 110.8 134.6	Formapilio 12×7 7×9 12×7 12×7 12×7	* 	
denti	4 44 45 46 47 48 49	Nome Almelec-AC Alweld 7/9 Minorca Leghom Dorking	7 ipo 9 9 9 9 9 9 9	Descrip50 c.guarda 12:47 c.guarda 13:65 MCM 7:49 c.guarda 110.8 MCM 12:47 c.guarda 110.8 MCM 12:47 c.guarda 130.8 MCM 12:47 c.guarda 130.8 MCM 12:47	Roc (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.3896	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027	Dirk (cm) 0 0.732 0.807 0.96	MCM 0 91.65 110.8 134.6 190.8	Formapão 12×7 7×9 12×7 12×7 12×7 12×7	A	
dent	t. 44 45 46 47 48 49 50	Name Almelec AC Alweld 7/9 Minorca Leghom Darking Grouse Dated	9 9 9 9 9 9 9 9	Descripão c.guarda 1247 c.guarda 1247 c.guarda 1265 MCM 739 c.guarda 110.8 MCM 1247 c.guarda 134.6 MCM 1247 c.guarda 139.8 MCM 1247 c.guarda 60.0 MCM 841 c.guarda 60.0 MCM 841	Roc (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.3896 0.84072 0.60049	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027 0.93218 1.1299	Dint (cm) 0 0.732 0.807 0.96 0.424 0.202	MCM 0 91.65 110.8 134.6 190.8 80	Formapilio 12×7 7×9 12×7 12×7 12×7 8×1 12×7	* 	
dent	r. 44 45 46 47 48 49 50	Name Almelec AC Alweld 7/9 Minorca Leghom Dorking Grouse Petrel 2/8 ¹ Ann	Tipo 9 9 9 9 9 9 9 9 9 9 9 9	Descriptio c.guarda 12x7 c.guarda 11x5 MCM 7X9 c.guarda 11x6 MCM 12x7 c.guarda 11x6 MCM 12x7 c.guarda 10x8 MCM 12x7 c.guarda 80.0 MCM 8x1 c.guarda 80.0 MCM 8x1 c.guarda 101.8 MCM 12x7 c.guarda 101.8 MCM 12x7	Pice (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.3896 0.84072 0.6884 0.4028	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027 0.93218 1.1709 0.9528	Dint (cm) 0 0.732 0.807 0.96 0.424 0.702	MCM 0 91.65 110.8 134.6 190.8 80 101.8	Formapilio 12×7 7×9 12×7 12×7 12×7 8×1 12×7 8×1 12×7		
denti	r. 44 45 46 47 48 49 50 51 52	Name Almelec-AC Alweld 7/9 Minorca Leghom Dorking Grouse Petrel 3/8' App	Fi Tipo 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Descriptio Cyserkip 12:47 c guarda 12:47 c guarda 11:68 MCM 7:49 c guarda 11:68 MCM 12:47 c guarda 11:68 MCM 12:47 c guarda 10:88 MCM 12:47 c guarda 10:88 MCM 12:47 c guarda 10:18 MCM 12:47 c guarda 10:18 MCM 12:47 c guarda 10:18 MCM 12:56 c guarda 10:18 MCM 12:56	Roc (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.3896 0.84072 0.65848 4.0389 4.0609	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027 0.93218 1.1709 0.9525 0.79592	Dirk (cm) 0 0,732 0,807 0,96 0,424 0,702 0 0	MCM 0 91.65 110.8 134.6 190.8 80 101.8 0	Formapão 12×7 7×9 12×7 12×7 12×7 8×1 12×7 7 fice 7 fice		
dent	r. 44 45 46 47 48 49 50 51 52 82	Name Almelec.AC Alweld 7/9 Minorca Leghom Dorking Grouse Petrel 3/8' App 5/16'' App 5/16'' App	Fi Tipo 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Description Cyturdia 1247 c.guardia 1247 c.guardia 110.8 MCM 1247 c.guardia 110.8 MCM 1247 c.guardia 110.8 MCM 1247 c.guardia 130.8 MCM 1247 c.guardia 130.8 MCM 1247 c.guardia 130.8 MCM 1247 c.guardia 130.8 MCM 1247 c.guardia 150.8 MCM 1265 c.guardia HS MCM 12 filos c.guardia HS MCM 7 filos	Roc (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.3256 0.84072 0.68848 4.0389 4.6603 0.98290	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027 0.93218 1.1709 0.9525 0.79502 0.9779	Dirk (cm) 0 0,732 0,807 0,96 0,424 0,702 0 0 0	MCM 91.65 110.8 134.6 190.8 80 101.8 0 0	Formapilio 12×7 7×9 12×7 12×7 12×7 8×1 12×7 8×1 12×7 7 lios 7 lios	×	
dent	t. 44 45 46 47 48 49 50 51 52 53 53	Name Almelec.AC Alweld 7/9 Minorca Leghom Dorking Grouse Petrel 3/8" App 5/16" App 3/8" Cobre	FI Tipo 9 9 9 9 9 9 9 9 9 9 9 9 9	Descriptio cypards 12:77 cypards 31:65 MCM 7:99 cypards 31:65 MCM 7:99 cypards 31:65 MCM 72:07 cypards 31:65 MCM 12:77 cypards 30:8 MCM 12:77 cypards 30:8 MCM 7:50 cypards 10: MCM 7:50 cypards 10: MCM 7:50 cypards 20: M	Ecc (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.3896 0.84072 0.68848 4.0389 4.6603 0.93732 0.93732	Desk (cm) 1.1252 0.87122 1.2217 1.3462 1.6027 0.93218 1.1709 0.9525 0.79502 0.9779 1.2592	Dint (cm) 0 0.732 0.807 0.96 0.424 0.702 0 0 0 0 0 0 0 0 0 0 0 0	MCM 91.65 110.8 134.6 190.8 80 101.8 0 0 0	Formação 12×7 7×9 12×7 12×7 12×7 12×7 8×1 12×7 8×1 12×7 7 lice 7 lice 7 lice		
dent	44 45 46 47 48 49 50 51 52 53 54 68	Nome Almelec-AC Alweld 7/9 Minorca Leghom Dorking Grouse Petrel 3/8' App 5/16'' App 3/8' Cobre Arvidal 1/4'' ST	Fi Tipo 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Descriptio Descriptio Cyseds 12:27 cysueds 12:67 cysueds 10:65 MCM 7:39 cysueds 10:65 MCM 7:39 cysueds 10:68 MCM 12:77 cysueds 10:84 MCM 12:77 cysueds 10:84 MCM 12:77 cysueds 80:00 MCM 8:71 cysueds 80:00 MCM 7:76 cysueds 155 MCM 7:76 cysueds 155 MCM 7:760 cysueds 155 MCM 7:760 cysueds 30:00 MCM 7:760	Ecc (Dhm/km) 0.73446 1.843 0.62262 0.52566 0.3896 0.84072 0.68848 4.0389 4.6603 0.93732 0.40079 0.72529	Dest (cm) 1.1252 0.87122 1.2217 1.3462 1.6027 0.93218 1.1709 0.9525 0.79502 0.9779 1.2598 0.628	Dint (cm) 0 0,732 0,807 0,424 0,702 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MCM 0 91.65 110.8 134.6 190.8 80 101.8 0 0 0 0 0 0 0	Formação 12×7 7×9 12×7 12×7 12×7 12×7 8×1 12×7 8×1 12×7 7 lice 7 lice 7 lice		
dent	44 45 46 47 48 49 50 51 52 53 54 55	Name Almelec-AC Alweld 7/9 Minorca Leghom Dorking Grouse Petral 3/8" App 5/16" App 3/8" Cobre Arvidal 1/4" STL 1/4"	Fi Tipo 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	cyards 12/7 cyards 12/7 cyards 12/7 cyards 12/7 cyards 12/7 cyards 110.8 MCM 12/7 cyards 110.8 MCM 12/7 cyards 110.8 MCM 12/7 cyards 10.4 MCM 12/7 cyards 80.0 MCM 8/1 cyards 80.0 MCM 8/1 cyards 80.0 MCM 8/1 cyards 80.0 MCM 8/1 cyards 80.0 MCM 7 fos cyards 15. MCM 7 fos cyards 0 fos cyards fos fos cyards fos fos cyards fos	Rice (Dhm/km) 0.73446 1.843 0.62262 0.52506 0.84072 0.68848 4.0389 4.6603 0.93792 0.40079 0.70572 7.7570	Dest (cm) 1.1252 0.87122 1.2217 1.3452 1.6027 0.93218 1.1709 0.9555 0.79502 0.9779 1.2598 0.635	Dirk (cm) 0 0,732 0,807 0,96 0,424 0,702 0 0 0 0 0 0 0 0 0 0 0 0 0	MCM 91.65 110.8 134.6 190.8 80 101.8 0 0 0 0 0 0 0 0	Formação 12×7 7×9 12×7 12×7 12×7 8×1 12×7 8×1 12×7 7 lios 7 lios 7 lios	* 	

Fig. 5. Tela de dados de condutores e cabos-guarda.

Quando se altera algum dado de um determinado cabo, as alterações são gravadas no banco de dados ao se clicar no

botão de confirmação ou mover para o próximo condutor, usando os botões de navegação ou as setas do teclado:

	14	~	1		~							
Γ	Identif		Nome	Tipo	Descrição		Rcc (Ohm/km)	Dext (cm)	Dint (cm)	MCM	Formação	^
D	1	2	Drake	с	condutor 79	95.0 MCM 26X7	0.077672	2.8143	1.036	795	26×7	
Г		3	Grosbeak	с	condutor 63	86.0 MCM 26X7	0.096934	2.5146	0.921	636	26×7	-
Ξ												

Para os cabos-guarda o funcionamento da alteração é o mesmo.

D. Dados de Torres

A tela de controle de dados de torres é a seguinte.

os <u>S</u> aída	a <u>M</u> apa <u>C</u> o	ompara	Mgdição	Ajuda															
Linhas	Barra	10 A	Cabos	To	ares s	Mapa	Com	para 🔋	Medi	ções									
			~ 1																
lentif. Te	ensão (Pon log		Nome Ea	itukura	Tipo	Empresa	Desenho	Xa (m)	Ya (m)	Xb (m)	Yb (m)	Xc (m)	Yo(m)	Xd (m)	Yd (m)	Xe (m)	Ye(m)	XF(m)	YF (m)
32	Prose	na Forreg	32:440	3	\$	CESP	*.dwg	-11.89	27.84	0	27.84	11.89	27.84	0	0	0	0	0	0
1012	440	440	440 circ	simples est	8	Cteep	d10.dwg	-11	23	0	23	11	23	0	0	0	0	0	0
1011	440	440	440 circ	duplo trian	d	Cteep	d8.dwg	-11	28	-15.6	18	-6.6	18	11	28	15.6	18	6.6	18
1010	440	440	440 circ	duplo vert	d	Cteep	d9.dwg	-6.9	42.2	-7.1	32.6	-7.3	23	6.9	42.2	7.1	32.6	7.3	23
1009	440	440	440 circ	simples W	0	Cteep	d12.dwg	-11.2	22.95	0	26.95	11.2	22.95	0	0	0	0	0	0
1008	440	440	440 circ	simples (V)	\$	Cheep	d11.dwg	41.2	23	0	24.4	11.2	23	0	0	0	0	10.05	0
20	440	440	1: 440		0	CEOP	1.0Wg	15.34	23.1	6.35	23.1	10.85	33.15	-10.34	23.1	-6.35	23.1	-10.85	33.15
30	440	440	30.440		*	CEOP'	Lolug	-11.2	22.33	0	22.89	11.2	22.99	0	0	0	0	0	0
20	440	440	23:440	*	•	CESP	* dwg	-113	24.29	0	24.29	11.3	24.29	0	0	0	0	0	0
2.5	440	440	00.110		-	recp	*.dwg	-12.3	24.2	0	24.2	12.3	24.2	0	0	0	0	0	0
22	441		22 441									1.100.001							
22 18	440	440	22: 440	5	5	CESP	*.dwg	.9	15.48	0	20.28	9	15.48	0	0	0	0	0	0
22 18	440 440	440	22: 440	3	s Gam	CESP	1.dwg	-9	15.48	0 Sales Br	20.28	9	15.48	0	Ö	Ū	0	0	,
22 18 weta Cond	440 440	440	22: 440	;	Geon	CESP etria	1.dwg	-9	15.48	Seleção	20.28 Tensão	9 Torre	15.48	0	0	0	0	0	•
22 18 ueta Cond	440 440 Jutores	440	22: 440	:	Geon X(c	etria -7	*.dwg X(cg2)	-9 Y[cg2] 7	15.48	0 Seleção ⊂ Qua	20.28 Tensão Iquer	9 Torre	15.48	0	0	0	0	0	,
22 18 weta Cond	440 440	440	22: 440	:	Geon X(c	etria 1) Y(cg1)	*.dwg X(cg2) 35	-9 Y[og2] 7	15.48 35	0 Seleção C Qua C 69	20.28 Tensão Iquer	9 Tone	15.48	0	0	0	0	0	,
22 18 weta Cond	440 440	440	22: 440	*	Geon Xio	etria (CESP a1) Y(eg1) -7 Y(A) 1 Y(A)	*.dwg X(cg2) 35 X(D)	Y[cg2] 7 7 Y[D]	15.48	0 Seleção C Qua C 69 C 88	20.28 Tensão Iquer	9 Torre	15.48	0	0	0	0	0	•
22 18 weta Cond	440 440	440	22: 440	*	Geon X(c X(A	etria a1) Y(cg1) -7 I Y(A) -11	*.dwg 35 23 23	Y[og2] 7 Y[D] 0	15.48 35 0	0 Seleção C Qua C 69 C 88	20.28 Tensão Iquer	9 Torre	15.48	0	0	0	0	0	,
22 18 weta Cond	440 440	440 440	18: 440	*	Geon X(c X(A X(A X(B	etria (ESP 1) Y[cg1] -7 1 Y[A] -11 1 Y[B]	*.dwg 35 X(cg2) 35 X(D) 23 X(D) X(E)	-9 -9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15.48	0 Seleção C Qua C 69 C 88 C 138	20.28 Tensão Iquer	9 Torre	15.48	0	0	0	0	0	•
22 18 wueta Cond	440 440	+40 440	18: 440	3	Geon Xlo Xla XlA XlA	etria [ESP 1] Y[cg1] -7 1 Y[A] -11 1 Y[B] 0	*.dwg 35 / 23 / 23 / 23 / 23 /	-9 7 7 100 7 7 10 10 10 10	15.48	0 Seleção C Qua C 69 C 88 C 138 C 230	20.28 Tensão Iquer	9 Torre	15.48	0	0	0	0	0	
22 18 weta Cond	440 440	+40 440	18: 440	3	Geon X(c X(A X(A X(A X(A) X(A) X(A) X(A) X(A) X(etria (ESP at) Y(cg1) -7 -7 -11 -11 -11 - Y(B) 0 -11 -11 -11 -11 -11 -11 -11	*.dwg 35 / 23 / 23 / 23 / 23 / 23 / 23 / 23 / 23	-9 7 7 7 10 9 10 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	15.48 35 0	0 Seleção C Que C 69 C 88 C 138 C 230	20.28 Tensão Iquer	9 Torre	15.48	0	0	0	0	0	
22 18 weta Cond	440 440	+40 440 •	•	3	Geom	etria a1) Y(cg1) -7 Y(A) -11 I Y(B) 0 (C) Y(C) 11	1.dwg X(cg2) 35 23 23 23 23 23 23 23 23 23 23 23	-9 7 7 7 10 10 10 11 10 11 11 10 11 11 11 11 11	15.48 35 0	0 C Que C 69 C 88 C 138 C 230 C 345	20.28 Tensão Iquer	9 Tome	15,48	0	0	0	0	0	,
22 18 weta Cond	440 440	+40 440	•	3	Geon Xic XIA XIB XIB	etria a1) Y(cg1) -7 1 Y(A) -11 1 Y(B) 0 10 11 11 14 10 11 10 11 10 10 10 10 10 10	*.dwg X(cg2) 35 X(D) 23 X(E) 23 X(F) 23 Pecha Guards	Y(cg2) 7 Y(D) 0 Y(E) 0 Y(F)	15.48 35 0	0 Seleção C Qua C 69 C 88 C 138 C 230 C 345 C 345	20.28 Tensilo Iquer	9 Torre	15,48	0	0	0	0	0	•
22 18 weta Cond	440 440	+40 440	•	3	Geon Xlo XIA XIA XIA Flei	ettia a1) Y(cg1) -7 1 Y(A) -11 1 Y(B) 0 (C) Y(C) 11 ha Cond 10	*.dwg 35 //(cg2) 35 //(Cg2) 23 //(E) 23	9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	15.48 35 0	0 Seleção C Qua C 69 C 88 C 138 C 230 C 345 C 440 C não	20.28 Tensilo Iquer	9 Torre	15,48	0	0		0	0	0 *

Fig. 6. Tela de dados de torres.

As funções realizadas nessa tela são as seguintes:

- Alteração de dados das torres
- Seleção de torres por tensão
- Visualização da silhueta

1) Alteração de dados das torres

A filosofia é a mesma dos dados de cabos, ou seja, os dados são alterados movendo-se para outra.

E. Mapa

A seguir a tela de controle de visualização do mapa esquemático das linhas e barras.

Fig. 7. Tela de visualização do mapa.

- As funções realizadas nessa tela são as seguintes:
- Navegação no mapa
- Controle de zoom
- Seleção de tensões

1) Navegação no mapa

A navegação pelo mapa, no caso de zoom alto, em o mapa não cabe na tela, é feita com as barras de rolagem horizontal e vertical.

Ao se passar o mouse próximo a uma barra, é exibido o nome da mesma e ao se clicar próximo a uma linha ou barra, são exibidas algumas informações da barra ou da linha.

F. Comparação de parâmetros

A tela de comparação de parâmetros é a seguinte:

Defect Sele Markage Apple Apple Markage Apple Markge Apple Ma	👹 ParLin - Gerenciamento de Parâm	etros de Linhas de Transi	nissão	
Norm Norm <th< td=""><td>Dados Saida Mapa Compara</td><td>Mgdição <u>Aj</u>uda</td><td></td><td></td></th<>	Dados Saida Mapa Compara	Mgdição <u>Aj</u> uda		
Selection double De bance Wei Tendes bance Hd Parallelic Columbra Parallelic Columbra Tendes bance Hd Tendes bance Hd Tendes bance Hd Tendes bance Head	Linhas Baras	Cabos Torres	🗞 Mapa 👫 Compara 📰 Medições	
Planeterio Coladadou Cargo 2627 In si L. 2012 14 450 30 55 X 10 550 X 10 14 450 30 55 X 10 1520 X 14 450 30 5 X 10 1520 X 14 450 30 152 X 14 450 30 152 X 14 450 30 152 X 14 450 30 152 X 14 450 30 154 0 14 450 10 12 12 12 14 450 450 12 12 12 14 450 12 12 12 12 14 450 12 12 12 12 14 550 12 12 12 12 14 550 12 12 12 12 12 12 12 12 12 12 12 12 12	Seleciona decks De busca ara	Para bus	ca a Tensão busca 440 💌	
Corpus 2857 Im Still MO2 TE MA 1 00255 X N T D13 Cycen T154 MA N 207 X N T D13 Cycen T154 MA N 207 X N T D13 Cycen T154 MA 207 X N T D13 Cycen T154 MA 207 X N T D23 Cycen T154 MA 207 X N T D23 Cycen T157 X N T D23 X N T D23 X N T D23 X N T D23 X N D3 D3 <t< td=""><td>Parámetros Calculados</td><td></td><td>Parâmetros Anarede</td><td>Pasâmetros Anafas</td></t<>	Parámetros Calculados		Parâmetros Anarede	Pasâmetros Anafas
NI OXES X HO 5534 X NI OXES X HO S534 X NI OXES X HO S534 X NI OXES X HO S255 X NI OXES X X X X X <	Compr 296.7 km SIL	802.76 MVA	C norm 1524 MVA	Compr 141 km
Int Outcome No Dubble No Dubble Dubble <td>01 0.3525 * 00</td> <td>E 2E24 %</td> <td>01 0.21 % 0.000 1524 1644</td> <td>01 018 % 00 27 %</td>	01 0.3525 * 00	E 2E24 %	01 0.21 % 0.000 1524 1644	01 018 % 00 27 %
X1 4.450 % X2 X0 10.275 % X1 2.24 % X0 0.56 % Mint X001 Mint X011 10.75 % X1 2.24 % X0 0.56 % Mint X011 Mint X011	NI 0.3623 A RU	0.3334 A	N1 021 % C_emer 1324 MVR	RI 0.10 A R0 27 A
Mort 307.01 More 16.0 Mort 307.01 More 1707.13 Chrogen Field SEPP dual NUISP2 (SP.MF) Chrogen Field SEPP dual NUISP2 (SP.MF) Chrogen Field SEPP dual NUISP2 (SP.MF) Andreadure 24 State Sepa dual Nuise More 1707.13 Chrogen Field SEPP dual NUISP2 (SP.MF) Andreadure 24 State Sepa dual Nuise	×1 4.593 % ×0	18.379 %	×1 2.65 %	X1 2.24 % X0 9.16 %
Tends 440 MV MLMB T Description File C/Hogen file/LSPP/dch10/057/_05P/J0 C/Hogen file/LSPP/dch10/057/_05P/J0 C/Hogen file/LSPP/dch10/057/_05P/J0 Applicacity 40 Sovelity 40 <td>MVarl 307.81 MVarD</td> <td>164.8</td> <td>MVa1 170.71 %</td> <td></td>	MVarl 307.81 MVarD	164.8	MVa1 170.71 %	
C (Vingen RevLSPP)(L1997)(L199	Tensão 440 kV Id Link	a 1		
Box Pase			C:\Program Files\LSP\ParLin1\0NS79_09.PWF	C:\Program Files\LSP\ParLin1\BR0912PN.ANA
Approx.011.40 SANELU.1.40 Approx.012.40 B485 B485 Approx.012.40 SANELU.1.40 Approx.012.40 B485	De	Para 🔺	de para Nde Npara A	de para Nde Npara A
APAPAQUIZ, 440 SANBELDZ, 440 SOLTER, 46 APAPAQUIZ, 440 SOLTER, 46 APAPAQUIZ, 440 SOLTER, 46 APAPAQUIZ, 440 APAPAQUIZ, 440 SANBELDZ, 440 <	ARARAQU1 440	SANGEL01_440	ARARAQUA-44 MMIRIM-3-440 559 565	AIMM3ARA44(ARARAQ, 440 8495 1383
APAPAGUT, 40 SANELUT, 40	ARARAQU2_440	SANGEL02_440	ARARAQUA-44 S.ANGELD-44C 559 593	AG.VERM 440 ARARAQ. 440 1238 1383
AnAranduzi, 400 MARTINIT, 400 JANARAUZI, 400 MARTINIT, 400 JANARAUZI, 400 JANARAUZ	ARARAQU1_440	SANGEL01_440	ARARAQUA-44 SBARBARA-44 559 567	ASSIS 440 CAPIVARA440 1345 1348
APAPAGUT, 400 SANGELD, 400 COSTER, 40 APAPAGUT, 440 COSTER, 40 APAPAGUT, 440 COSTER, 40 APAPAGUT, 400 COSTER, 40 APAPAGUT, 400 COSTER, 40 CASTARD, 400 PAPAGUT, 400 CASTARD, 400 APAPAGUT, 400 CASTARD, 400 APAPAGUT, 400 CASTARD, 400 APAPAGUT, 400 CASTARD, 400 APAPAGUT, 400 SANGELD, 400 Sander, 400 SANGELD, 400 CASTARD, 400 SANGELD, 400 Sander, 400 SANGELD, 400 APAPAGUT, 400 SANGELD, 400 SANGEL, 400 SANGEL, 400	ARARAQU2_440	MMIRIM3Y_440	ARARAQUA-44 BAURU440 559 561	BAURU 440 ARARAQ. 440 1349 1383
SDTER_40 AMAMQUZ_400 SDTER_40 AMAMQUZ_400 OPPMALA AMAMQUZ_400 OPPMALA SDTER_40 MIRSSULE SDTER_40 SDTER_40 SDTER_40	ARARAQU1_440	SANGEL01_440	AVERMELH-44 ARARAQUA-44 536 559	CAPIVARA440 TAQUARU 440 1348 1414
Sotting, 40 AddAHQU, 40 Impossive 44 AddAHQU, 44 972 973 Address, 40 Address, 440 Address, 440 972 973 Address, 440 States, 440 Address, 440 972 973 Address, 440 States, 440 Address, 440 972 973 Address, 440 States, 440 972 973 Address, 440 States, 440 972 973 Address, 440 States, 443 States, 443 States, 443 972 973 Address, 440 States, 443 States, 443 972 973 974 Address, 440 States, 443 States, 443 States, 443 974 974 Address, 440 States, 443	ISOLTEIR_440	ARARAQU2_440	CAPIVARA-440 ASSIS440 549 552	M.MIRIM3440 A#MM3ARA44I 1404 8495
CarPropa,400 ASSIS 1,40 Markova,400 CarPropa,400 Arbonauti,400 CarPropa,400 Arbonauti,400 Sources,400	ISOLTEIR_440	ARARAQU1_440	MIRASS2-440 ARARAQUA-44 572 559	MIRASSOL 44(ARARAQ, 440 6662 1383
TADUMUC_440 CAPMARA_40 TADUMUC_440 SSAPESA4,40 APAPAQUI_440 SSAPESA44,40 <	CAPIVARA_440	ASSIS 1_440	MIRASS2-440 ARARAQUA-44 572 559	MIRASSOL 44(ARARAQ. 440 6662 1383
APAPAGUT, 400 SBARBARA, 400 SBARBARA	TAQUARUC_440	CAPIVARA_440	RIBPRETO-44(SBARBARA-44 563 567	R.PRETO 440 SBARBARA44(1239 1253
IP PETETU, 40 SIMPRAMA, 40	ARARAQU1_440	SBARBARA_440	SBARBARA-44 SUMARE440 567 570	SANGELO 440 ARARAQ. 440 1282 1383
Standbard, 400 Standba	R.PRET01_440	SBARBARA_440	TAQUARUC-44 CAPIVARA-440 547 549	SBARBARA44(ARARAQ. 440 1253 1383
APERENT:440 APARAQUI_40 APARAQUI_40 APARAQUI_40 APARAQUI_40 SIMILETUT_40 APARAQUI_40 SIMILETUT_40	SBARBARA_440	SUMARE 1_440		SBARBARA440 SUMARE 440 1253 1276
BAURD 1.40 AMARAQUA.40 ARAPAQUI_40 SINEED1.40 ARAPAQUI_40 (SINEED1.40)	AVERMEL1_440	ARARAQU1_440		
APAPAQU_40 SANGELD_40 APAPAQU_40 ISANGELD_40 .	BAURU 1_440	ARARAQUA_440		
LARMARDU_440 [SANGELD_440	ARARAQU1_440	SANGEL01_440		
, ·	ARARAQU1_440	SANGEL01_440		h\\
· · · · · · · · · · · · · · · · · · ·				\rightarrow
		-	-	-
	I <	•	< <u>□</u> →	I I € ■ P

Fig. 8. Tela de comparação de parâmetros.

As funções realizadas nessa tela são as seguintes:

- Seleção de decks de Anarede e Anafas
- Busca de linhas por tensão e extremidade

1) Busca de linhas por tensão e extremidade

Um exemplo de utilização é a comparação de parâmetros da linha Bauru – Araraquara 440, onde a lista vai se reduzindo assim que os critérios vão ficando mais específicos:

idos <u>S</u> aída <u>M</u> apa <u>C</u> om-	para M <u>e</u> dição <u>Aj</u> ud	a															
Linhas Barras	Cabos 🙀	forres	4	🏷 Maj	pa 1	Compara	Mediçő	20									
Seleciona decks De busca	e beu	Para bi	usca	a a		Tensão	busca 440		·						5	Ð	GTI TRAVS
arâmetros Calculados				Parâme	tros Anarec	ie -				Pa	râmetros	Anafas		-			
omor 235.3 km	SIL	MVA					C norm	1067	MVA	Co	mor 🗆		138 k				
1 *	80	*		81		013 *	Cemer	1057	MVA	BI			118 \$		80 E		2.84 %
		~			<u> </u>	1.71 4	o_ono (1.00				0.00
· * .	×0	~		~	<u> </u>	<u></u> a					1		2.30 %		0 1		0.30 %
Var1	MVar0			MVar1	10	2.88 %											
					1.0												
ensão 440 kV	Id Linha 5										_						
ensão 440 kV	Id Linha 5			C:\Prog	pam Files\L	SP\ParLin1\0	NS79_09.Pw1			c	Program	FilesVL	SP\Pat	.in1\BR	0912PN.	ANA	
ensão 440 kV De	Id Linha 5	-		C:\Prog	pam Files\L	SP\ParLin1\0	NS79_09.Pw1 Nde	Npara		e F	Program	FilesVL	SP\Parl	.in1\BR	0912PN. Nde	ANA N	ipara
ensão 440 kV De BAURU 2_440	Id Linha 5 Para CABREUVA_44	0		C:\Prog	pam Files\L	SP\ParLin1\0 para (BAURU440	NS79_09.Pw1 Nde	Npara 8 5	361	c'	Program de ASSIS	Files\L	SP\Pat para BAURL	.in1\BR J 440	0912PN. Nde	ANA 1345	Apara 1349
ensão 440 kV De BAURU 2_440 BAURU 1_440	Id Linha 5 Para CABREUVA_44 CABREUVA_44	0		C:\Prog	pam Files\L IFIAQUA-44 IS440	SP\ParLin1\0 para IBAURU440 BAURU440	NS79_09.Pw1 Nde 0 55:	Npara B 5 2 5	961 361	۲ ۲	Program de ASSIS BAURU	Files\L 440 440	SP/Pail para BAURI JUPIA	in1\BR J 440 440	0912PN. Nde	ANA 1345 1349	4para 1349 1356
ensão 440 kV De BAURU 2_440 BAURU 1_440 BAURU 2_440	Id Linhs 5 Para CABREUVA_44 CABREUVA_44 E.GUACU2_440	0		C:\Prog de ARA ASS BAU	pam Files\L RAQUA-44 IS440 IRU440	SP/ParLin1\0 para IBAURU440 BAURU440 DESTE440	NS79_09.Pw1 Nde 0 55 0 55	: Npara 3 5 2 5 1 4	61 61 114	2 	Program de ASSIS BAURU BAURU	Files\L 440 440 440	SP/Pad para BAURI JUPIA JUPIA	in1\BR J 440 440 440	0912PN.	ANA 1345 1349 1349	4para 1349 1356 1356
440 kV De BAURU 2_440 BAURU 1_440 BAURU 2_440 BAURU 2_440 BAURU 1_440	Id Linha 5 Para CABREUVA_44 CABREUVA_44 E.GUACU2_440 E.GUACU2_440			C:\Prog de ARA ASS BAU BAU	PAQUA-44 IS440 IRU440 IRU440	SP\PatLin1\0 pata BAURU440 BAURU440 DESTE440 DESTE440	NS79_09.Pw1 Nde 0 55 0 55 1 56 1 56	: Npara 3 5 2 5 1 4 1 4	\$61 \$61 \$14	2	Program de ASSIS BAURU BAURU BAURU	Files\L 440 440 440 440	SP/Pail para BAURU JUPIA JUPIA ILHASO	in1\BR 440 440 0LT440	0912PN.	ANA 1345 1349 1349 1349	ipara 1349 1356 1356 1381
rnião 440 KV 0e BAJRU 2,440 BAJRU 1,440 BAJRU 1,440 BAJRU 1,440 BAJRU 1,440	Id Linha 5 Para CABREUVA_44 E GUADU2_440 E GUADU2_440 E GUADU2_440 T.OESTEY_440	0		C:\Prog de ARA ASS BAU BAU BAU	Pam Files\LL IRADUA-44 IS440 IRU440 IRU440 IRU440	SP\PatLin1\0 para IBAURU440 BAURU440 0ESTE440 0ESTE440 CABREUVA-4	NS79_09.Pw1 Nde 0 55 0 55 0 55 0 56 4 56	: Npara 3 5 2 5 1 4 1 4 1 5	961 961 914 934		Program de ASSIS BAURU BAURU BAURU BAURU	FilesVL 440 440 440 440	SPVPail para BAURI JUPIA JUPIA ILHASO ILHASO	in1\BR J 440 440 440 0LT440 0LT440	0912PN.	ANA 1345 1349 1349 1349 1349	4para 1349 1356 1356 1381 1381
Proão 440 KV De BAURU 2,440 BAURU 1,440 BAURU 2,440 BAURU 1,440 BAURU 1,440 BAURU 1,440 BAURU 1,440	Id Links 5 Para CABREUVA_44 CABREUVA_44 E GUADU2_440 E GUADU2_440 T.0ESTEY_440 T.0ESTEY_440			C:VProg de ARA ASS BAU BAU BAU BAU	ram Files\L RAQUA-44 IS440 IRU440 IRU440 IRU440 IRU440	SP\PatLin1\0 para (BAURU440 BAURU440 0ESTE440 0ESTE440 CABREUVA-4 CABREUVA-4	NS79_08.Pw1 Nde 0 55 0 55 1 56 1 56 4 56 4 56	: Npara 3 5 2 5 1 4 1 4 1 5 1 5	61 61 114 114 384		Program de ASSIS BAURU BAURU BAURU BAURU BAURU	Files/L 440 440 440 440 440 440	SP/Pat BAURL JUPIA JUPIA ILHAS(ARARA	in1\BR 440 440 0LT440 0LT440 0LT440	0912PN. Nde	ANA 1345 1349 1349 1349 1349 1349	Ipara 1349 1356 1356 1381 1381 1383
A40 kV De BAURU 2_440 BAURU 1_440 BAURU 1_440	Id Linhs 5 Para CABREUVA_44 CABREUVA_44 E GUACU2_440 E GUACU2_440 T.0ESTEY_440 T.0ESTEY_440 BAURU 1_440 BAURU 1_44	0 0 1		C:\Prog de ARA ASS BAU BAU BAU BAU	ram Files\L RADUA-44 IS440 IRU440 IRU440 IRU440 IRU440 LTEIR-440	SP/ParLin1\0 para BAURU440 DESTE440 CABRELIVA-4 CABRELIVA-4 BAURU440	NS79_08.PW1 Nde 0 55 0 55 0 55 0 55 4 56 4 56 4 56 1 53	: 3 5 2 5 1 4 1 4 1 5 3 5 3 5	61 61 114 114 114 114 114 114 114 114 11		Program de ASSIS BAURU BAURU BAURU BAURU BAURU BAURU	Files\L 440 440 440 440 440 440	SP/Pat BAURU JUPIA JUPIA ILHASO ARARA DESTE	in1\BR 440 440 0LT440 0LT440 0LT440 0L 440	0912PN.	ANA 1345 1349 1349 1349 1349 1349 1349 1349	4para 1349 1356 1356 1381 1381 1383 1578
19830 440 KV De BAURU 2,440 BAURU 2,440 BAURU 2,440 BAURU 2,440 BAURU 1,440 BAURU 2,440 ISOLTEIR,440 ISOLTEIR,440	Id Linhs 5 Para CABREUVA_44 CABREUVA_44 E GUACUI2_444 E GUACUI_444 E GUACUI_440 T.0ESTEY_440 T.0ESTEY_440 BAURU 1_440 BAURU 1_440 BAURU 2_440 BAURU 2_			C:\Prog de ARA ASS BAU BAU BAU ISOI	PADUA-44 IS440 IRU440 IRU440 IRU440 IRU440 IRU440 LTEIR-440 LTEIR-440	SP/ParLin1\0 BAURU440 0ESTE440 0ESTE440 0ESTE440 CABREUVA-4 CABREUVA-4 BAURU440 BAURU440	NS79_09.Pw1 Nde 0 55 0 55 1 56 4 56 4 56 4 56 3 53 0 53	: 3 5 2 5 1 4 1 4 1 5 1 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	361 361 314 384 384 361 361		Program de ASSIS BAURU BAURU BAURU BAURU BAURU BAURU BAURU	Files\L 440 440 440 440 440 440 440 440	SP/Pail Pare BAURU JUPIA JUPIA ILHASO ILHASO ARARA DESTE DESTE	in1\BR 440 440 0LT440 0LT440 0LT440 0L 440 440	0912PN.	ANA 1345 1349 1349 1349 1349 1349 1349 1349 1349	4para 1349 1356 1381 1381 1383 1578 1578
nx50 440 kV De BAURU 2,440 BAURU 1,440 BAURU 1,440 BAURU 1,440 BAURU 1,440 ISOLTEIR,440 ISOLTEIR,440 JIPLA 1,440	Id Linhs 5 Para CABREUVA_44 CABREUVA_44 E GUACU1_440 E GUACU1_440 T.0ESTEY_440 BAURU 1_440			C:VProg de ASS BAU BAU BAU ISOI JUP	PAQUA-44 IS440 IRU440 IRU440 IRU440 IRU440 LTEIR-440	SP\ParLin1\01 para (BAURU440 0ESTE440 0ESTE440 0ESTE440 CABRELIVA-4 BAURU440 BAURU440 BAURU440 BAURU440	NS79_09.Pw1 Nde 0 550 0 550 0 550 0 550 0 550 0 553 0 533 0 533	Npara 3 5 2 5 1 4 1 5 1 5 3 5 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5	\$61 114 114 384 561 361 361		Program de ASSIS BAURU BAURU BAURU BAURU BAURU BAURU CABRE	Files/L 440 440 440 440 440 440 440 440	SP/Pail BAURI JUPIA JUPIA ILHASI ILHASI ARARA DESTE BAURI	in1\BR 440 440 0LT440 0LT440 0LT440 2.440 440 440 440	0912PN.	ANA 1345 1349 1349 1349 1349 1349 1349 1349 1349	Vpara 1349 1356 1356 1381 1381 1381 1383 1578 1578 1578 1349
moso 440 kV De BAURU 12,440 BAURU 12,440 BAURU 12,440 BAURU 12,440 BAURU 12,440 BAURU 12,440 BAURU 12,440 BAURU 12,440 ISOLTEIR_440 ISOLTEIR_440 JUPIA 1,440 JUPIA 1,440 BURU 12,440 BURU 12,440	Id Linhs 5 Para CARREUVA_44 CARREUVA_44 E GUACU2_440 E GUACU2_440 T.0ESTEY_440 BAURU 1_440 BAURU 1_440 BAURU 1_440 BAURU 1_440 BAURU 2_440			C:VProg de ARA ASS BAU BAU BAU ISOI JUP JUP	Pam Files/L IS440 IRU440 IRU440 IRU440 IRU440 LTEIR440 LTEIR-440 LTEIR-440 LA440	SP\ParLin1\0 para (BAURU440 0ESTE440 0ESTE440 0ESTE440 0ESTE440 CABRELIVA-4 CABRELIVA-4 BAURU440 BAURU440 BAURU440	NS79_09.Pw1 Nde 0 55 0 55 1 56 4 56 4 56 4 56 0 53 0 53 0 53 0 53 0 53	- Npara - - - - - - - - - - - - -	361 361 114 384 384 361 361 361 361		Program de ASSIS BAURU BAURU BAURU BAURU BAURU BAURU CABRE CABRE	Files/L 440 440 440 440 440 440 440 440 UVA44	SPVPad BAURU JUPIA JUPIA ILHASO ARARA DESTE BAURU BAURU BAURU	in1\BR 440 440 0LT440 0LT440 0LT440 0L440 440 440 440 440 440	0912PN.	ANA 1345 1349 1349 1349 1349 1349 1349 1349 1349 1349 1298	Apara 1349 1356 1356 1361 1361 1363 1578 1578 1578 1349 1349
Att KV De BAURU 2_440 BAURU 2_440 BAURU 2_440 BAURU 1_440 BAURU 1_440 BAURU 1_440 BAURU 1_440 ISOLTER_440 ISOLTER_440 ISOLTER_440 ISOLTER_440 JUPIA 1_440 JUPIA 2_440 SSIS 1_40 ISOLTER_440	Id Linhs 5 Para CABRELIVA_44 CABRELIVA_44 CABRELIVA_44 E GULCU2_444 E GULCU2_444 E GULCU2_444 E GULCU2_440 T.0ESTEY_440 BAURU 1_440 BAURU 2_440 BAURU 2_440 BAURU 1_440 BAURU			C:VProg de ARA ASS BAU BAU BAU ISOI JUP JUP	PADUA-44 IS440 IRU440 IRU440 IRU440 IRU440 LTEIR-440 LTEIR-440 IA440	SP\ParLin1\0 para IBAURU440 BAURU440 0ESTE440 0ESTE440 CABRELVA-4 CABRELVA-4 BAURU440 BAURU440 BAURU440	NS79_09.Pw/ Nde 0 550 0 550 0 550 0 550 0 550 4 560 4 560 4 560 0 530 0 533 0 533	5 3 5 2 5 1 4 1 4 1 5 3 5 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5	361 114 114 384 361 361 361 361 361 361		Program de ASSIS BAURU BAURU BAURU BAURU BAURU BAURU CABRE CABRE	440 440 440 440 440 440 440 440 440 440	SPVPad BAURU JUPIA JUPIA ILHASO ARARA DESTE BAURU BAURU	in1\BR 440 440 0LT440 0LT440 0LT440 0L440 440 440 J 440 J 440	0912PN.	ANA 1345 1349 1349 1349 1349 1349 1349 1349 1349	4para 1349 1356 1356 1381 1381 1383 1578 1578 1349 1349

Pode-se verificar para essa linha que os dados calculados e os presentes nos decks do ONS são bastante próximos.

G. Cálculo de parâmetros a partir de medições

As medições realizadas pelo SSC são fornecidas em formato Excel e salvas em arquivo texto, podendo ser lidos pelo aplicativo ParLin.

A seguir a tela de cálculo de parâmetros a partir das medições do SSC:

os <u>S</u> aída <u>M</u> apa <u>C</u> ompara M <u>e</u> dição	o Aju	da									
Linhas Baras Maras Cabos	A.	Torres 🦓 M	apa 👔	Compara	Mediçã	Ses					
arâmetros	Mediç	ões									
Medidos (médias)	No	data hora	Vibcal	Viremoto	Placel	Parmoto	0 local	0 remoto	B1 IDbm/km	×1 IDbm/km	C1 InF (rm)
R1 (0hm/km) 0.01397	1	23/09/07 00:00	456.7	458.4	321.6	.323.1	-98.0	.5.4	0.01782	0.3233	13.575
×1 (0hm/km) 0.3240	2	22/09/07 01:00	456.6	459.4	221.6	-323.1	.00.0	-6.4	0.01649	0.3235	13 590
C1 (nF/km) 13.393	3	23/09/07 02:00	456.6	458.4	321.6	.323.1	-88.0	6.4	0.01649	0.3235	13,580
	4	23/09/07 03:00	456.4	458.4	321.6	-323.1	-98.0	.5.4	0.01383	0.3240	13 590
Mandadas Bartinas)	5	23/09/07 04:00	456.4	458.4	321.6	-323.1	-99.0	-6.4	0.01393	0.3240	13,590
	6	23/09/07 05:00	456.4	458.4	321.6	-323.1	-88.0	-6.4	0.01383	0.3240	13,590
HT (UNMVKM) U.GESU2	7	23/09/07 06:00	456.4	458.4	321.6	-323.1	-88.0	-6.4	0.01383	0.3240	13,590
×1 (0hm/km) 0.321	8	23/09/07 07:00	456.4	459.4	321.6	-323.1	-98.0	-6.4	0.01383	0.3240	13,590
C1 (nF/km) 13.662	9	23/09/07 08:00	456.4	458.4	321.6	-323.1	-88.0	-6.4	0.01383	0.3240	13,590
	10	23/09/07 09:00	456.4	458.4	321.6	-323.1	-88.0	-3.2	0.01540	0.3237	13.201
Identif. Linha 46	11	23/09/07 10:00	456.4	458.4	321.6	-323.1	-99.0	-4.8	0.01461	0.3239	13.395
De BAU	12	23/09/07 11:00	456.4	458.4	321.6	-323.1	-88.0	-4.8	0.01461	0.3239	13.395
Para ARA	13	23/09/07 12:00	456.4	458.4	321.6	-323.1	-88.0	-4.8	0.01461	0.3239	13.395
	14	23/09/07 13:00	456.4	458.4	321.6	-323.1	-98.0	-4.8	0.01461	0.3239	13.395
<i>a</i> . <i>a</i>	15	23/09/07 14:00	456.4	458.4	321.6	-323.1	-88.0	4.8	0.01461	0.3239	13.395
mincapao	16	23/09/07 15:00	456.4	458.4	321.6	-323.1	-88.0	-4.8	0.01461	0.3239	13.395
BAU	17	23/09/07 16:00	456.4	458.4	321.6	-323.1	-88.0	-4.8	0.01461	0.3239	13.395
Para ARA	18	23/09/07 17:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
	19	23/09/07 18:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
Compr (km) 103.7	20	23/09/07 19:00	456.4	459.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
A 414 M	21	23/09/07 20:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
ensao (ku) 440	22	23/09/07 21:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
1 [23	23/09/07 22:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
Abre Medição Calcula	24	23/09/07 23:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199
	25	24/03/07 00:00	456.4	458.4	321.6	-323.1	-84.8	-6.4	0.01223	0.3242	13.199

Fig. 9. Tela de cálculo de parâmetros a partir de medições.

- As funções realizadas nessa tela são as seguintes:
- Abertura do arquivo de medições
- Localização da linha no banco de dados (se necessário)
- Cálculo experimental dos parâmetros

Para o caso da linha Embu Guaçu-Aldeia da Serra 345, no arquivo de medições a identificação é EMG-SUL, devendo *De* e *Para* ser alterados manualmente para GUA e SER por exemplo.

Os parâmetros são calculados para cada medição mas é feito o cálculo da média dos parâmetros, que são apresentados em:

Parâmetros Medidos (médias)	
R1 (Ohm/km)	0.01397
×1 (Ohm/km)	0.3240
C1 (nF/km)	13.393

Esses parâmetros médios calculados são gravados no banco de dados podendo ser vistos na tela de linhas. Para linhas sem medições disponíveis ou utilizadas esses dados ficam em branco na tela de linhas.

IV. AVALIAÇÃO DO ALGORITMO DE CÁLCULO EXPERIMENTAL

Foram feitos testes para as quatro planilhas de medições recebidas, para a linha Nova Avanhandava - São José do Rio Preto 138 kV circuito duplo, para a linha Bauru-Araraquara 440 kV, circuito simples e para a linha Embu Guaçu – Aldeia da Serra, 345 kV, circuito duplo.

O formato do arquivo texto, gerado a partir da planilha é o seguinte, normalmente compreendendo o dia inteiro, amostrado a cada 30 ou 60 minutos:

		R1		X1		C1				
		Ω/km	Erro %	Ω/km	Erro %	nF/km	Erro %			
	Teórico	0,09802	-	0,461	-	9,58	-			
	Circ 1	0,14537	48,3	0,4703	2,0	11,006	14,9			
	Circ 2	0,14483	47,8	0,4714	2,2	11,651	21,6			
~	Tabela 10.3 – Comparação parâmetros– NAV – SIR 138									

Tabela 1	0.3 - 0.3	Comparação	parâmetros-	NAV	′ – SJR	138.
----------	-----------	------------	-------------	-----	---------	------

	R1		X1		C1	
	Ω/km	Erro %	Ω/km	Erro %	nF/km	Erro %
Teórico	0,02502	-	0,321	-	13,622	-
Medido	0,01397	-44,2	0,3240	0,9	13,393	-1,7
 	a					

Tabela 10.5 – Comparação parâmetros- BAU-ARA 440.

			111		U	
	Ω/km	Erro %	Ω/km	Erro %	nF/km	Erro %
Teórico	0,0397	-	0,364	-	12,254	-
Medido	0,03857	-2,8	0,3685	1,2	14,209	15,9
Teórico Medido	0,0397 0,03857	-2,8	0,364 0,3685	- 1,2	12,254 14,209	

Tabela 10.7 - Comparação parâmetros- EMG-SUL 345, circ 1.

Os resultados mostraram o método de obtenção experimental de parâmetros implementado no aplicativo apresentou resultados relativamente satisfatórios, com erros maiores para as resistências, com os parâmetros obtidos não diferindo muito dos valores calculados teoricamente, principalmente as reatâncias em que foram obtidos valores bastante precisos, com erro máximo de 2,2%. A grande vantagem do algoritmo implementado no aplicativo é que o mesmo usa fórmulas diretas sem a necessidade de uso de técnicas de otimização.

Além disso, como não há disponibilidade de medições feitas por PMU's foi possível utilizar dados não sincronizados fornecidos pelo SSC (Sistema de Supervisão e Controle), sendo feita uma sincronização que utiliza os parâmetros teóricos da linha.

V. Conclusões

Os objetivos do projeto foram alcançados, sendo disponibilizado para a Cteep um aplicativo de controle de parâmetros dos dados das linhas, com o banco de dados preenchido a partir da conversão do banco de dados recebido no formato texto.

O aplicativo contém um módulo para cálculo de parâmetros de seqüência positiva com base nas medições do SSC sendo esses parâmetros gravados no banco de dados.

O aplicativo fornece recursos como comparação de parâmetros com decks dos programas Anarede e Anafas, para os quais fornece os modelos de cada linha.

O programa também realiza o modelamento da linha para o programa ATP conforme o tipo de modelo escolhido pelo usuário.

VI. REFERÊNCIAS BIBLIOGRÁFICAS

- Jiang, J.A.; Yang, J. Z.; Lin, Y. H.; Liu, C. H.; Ma, J.C.; "An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines Part I: Theory and Algorithms," IEEE Transactions on Power Delivery, vol. 15, no. 2, April 2000, pp 486-493.
- [2] Shengfang, L.; Chunju, F.; Weiyong, Y.; Cai Huarong; Li, K.K.; "A new phase measurement unit (PMU) based fault location algorithm for double circuit lines," Eighth IEE International Conference on Developments in Power System Protection, 2004. vol. 1, 5-8 April 2004 pp.188 – 191.
- [3] ATP Alternative Transients Program, Leuven, 1982.
- [4] Cepel Anarede Programa de Análise de Redes.
- [5] Cepel Anafas Programa de Análise de Faltas Assimétricas.
- [6] Mathworks. Matlab, High-performance numeric computation and visualization software: Reference guide, Imprenta Natick, Mass, 1992.Nota 1 Cteep param
- [7] Convênio Cteep-FUSP Desenvolvimento de Sistema de Gerenciamento e Controle de Dados e Parâmetros Elétricos de Linhas de Transmissão, Nota Técnica 1 - Revisão bibliográfica, 2007.
- [8] Convênio Cteep-FUSP Desenvolvimento de Sistema de Gerenciamento e Controle de Dados e Parâmetros Elétricos de Linhas de Transmissão, Manual do Aplicativo ParLin, 2007.