

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

Versão 1.0 22 a 25 Novembro de 2009 Recife - PE

GRUPO IV

GRUPO DE ESTUDO GRUPO DE ESTUDO ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA - GAT

MODELAGEM DOS ESTABILIZADORES DE SISTEMA DE POTÊNCIA DE UMA TERMELÉTRICA A CICLO COMBINADO INSTALADA EM SISTEMA PREDOMINANTEMENTE HIDRELÉTRICO

José Almeida do Nascimento*	José Carlos Teles Campos	Marcelo Falcucci	Paulo Roberto Maisonnave
UFC	UFC	ENDESA	ENDESA

RESUMO

O artigo apresenta o estudo do desempenho dos Estabilizadores de Sistemas de Potência aplicados aos geradores das turbinas a gás de uma usina termelétrica a ciclo combinado. Primeiramente, foram calculados os parâmetros de PSS a partir do modelo linearizado simplificado de uma máquina síncrona conectada a uma barra infinita. O modelo utilizado foi de terceira ordem e a abordagem da modelagem foi através de funções de transferência. De posse dos parâmetros, analisou-se o desempenho do PSS através do comportamento de uma máquina síncrona frente a distúrbios no ângulo de carga através de Espaço de Estados. Nesta etapa pode-se constatar a influência de cada um dos componentes da máquina síncrona (enrolamento de campo, AVR, PSS) no coeficiente de amortecimento e no coeficiente de sincronização da máquina, além de se poder estudar a estabilidade dinâmica do sistema através de seus autovalores. Por fim, comparou-se o desempenho dos PSS ajustados com os parâmetros calculados pelos fabricantes, ajustados no comissionamento e calculados pelo programa proposto. A validação do PSS calculado foi realizada através da análise de seu comportamento frente a distúrbios variados no Sistema Interligado Nacional.

PALAVRAS-CHAVE

Estabilizadores de sistema de potência, PSS, Usina termelétrica a ciclo combinado, Estabilidade dinâmica, AVR

1.0 - INTRODUÇÃO

A geração distribuída de energia elétrica com usinas localizadas junto aos consumidores têm sido estimulada devido aos elevados custos financeiros, ecológicos e sociais resultantes da construção de grandes hidrelétricas e longas linhas de transmissão. Existe também a necessidade de diversificação da matriz energética nacional, atualmente centralizada na geração hidráulica.

Nos grandes centros urbanos, a alternativa mais eficiente é a Usina Termelétrica de Ciclo Combinado que possui associadas à mesma planta turbinas a gás e a vapor. Utilizando o gás natural como combustível apresentam ainda vantagens de caráter ambiental quando comparadas com as equivalentes a carvão ou óleo mineral.

Tratando-se de uma tecnologia relativamente recente, há ainda oportunidades abertas para o desenvolvimento de técnicas que promovam aumento na eficiência térmica, no rendimento e na segurança dos equipamentos envolvidos, tornando ainda mais atrativa a instalação deste tipo de empreendimento. Dentre as pesquisas em desenvolvimento, destacam-se as técnicas de ajuste e projeto de controladores para o sistema de excitação dos geradores síncronos.

A estabilidade de sistemas de potência se refere à capacidade que os sistemas possuem de se manter em equilíbrio sob condições normais de operação, ou de atingir um estado de equilíbrio após ser submetido a algum

distúrbio. Uma variação suave no carregamento do sistema, considerada como uma pequena perturbação pode gerar oscilações eletromecânicas decorrentes de desequilíbrios do torque nos geradores síncronos (1).

A termelétrica em estudo possui uma potência instalada de 318,5 MW, sendo composta por: duas turbinas a gás, cada uma com potência nominal de 112,8 MW; uma turbina a vapor, com potência nominal de 113,1 MW; duas caldeiras de recuperação de calor; dois geradores de 133,8 MVA e um gerador com potência nominal de 147 MVA.

Neste trabalho, apresenta-se o desenvolvimento de modelos matemáticos e computacionais dos sistemas de controle dos geradores síncronos, levando em consideração as características específicas deste tipo de equipamento e sua utilização em campo. Através dos modelos levantados, foi desenvolvido um projeto para o estabilizador de potência considerando os parâmetros de uma usina termelétrica real.

O projeto do PSS é validado através de análise por Espaço de Estados. São apresentados ainda resultados de simulações de distúrbios no sistema elétrico para validação dos controladores projetados, comparando a atuação do controlador atualmente em operação na planta em estudo com o projetado pela metodologia proposta.

2.0 - MODELAGEM DA MÁQUINA SÍNCRONA E SEUS CONTROLADORES

O conjunto turbina, gerador e seus controladores é apresentado na Figura 1. A tensão gerada é controlada regulando a excitação do campo. À medida que a magnitude do campo de excitação aumenta, a tensão gerada e a potência reativa de saída aumentam. O Regulador Automático de Tensão (AVR) de um gerador síncrono é o responsável pelo controle da tensão terminal e pelo controle da energia reativa gerada. O AVR verifica a diferença entre a tensão de saída da máquina e uma tensão de referência. O erro de tensão é então compensado através do controle da excitatriz.

A utilização de sistemas de excitação rápidos pode tornar insatisfatório o grau de amortecimento das máquinas após a ocorrência de uma perturbação (2). Em regime permanente, quando o desvio da velocidade é zero ou aproximadamente zero, o regulador de tensão depende apenas do erro da tensão. Em regime transitório, porém, a velocidade do gerador não é constante e o ângulo do rotor varia, causando oscilações no movimento do rotor. A finalidade do PSS é utilizar a excitação do gerador para regular as oscilações de potência e, conseqüentemente, aumentar sua estabilidade. O PSS opera através do regulador de tensão, influenciando seu ponto de ajuste.

FIGURA 1 - Representação da Máguina em Diagrama de Blocos

O modelo de 3ª ordem do sistema máquina conectada a uma barra infinita através de uma impedância equivalente é apresentado na Figura 2, incluso o regulador de tensão, explicitado por um ganho K_e e uma constante de tempo T_e.

FIGURA 2 – Diagrama de blocos do sistema máquina barra infinita

O presente modelo é referenciado na literatura por (3). As constantes são apresentadas como seguem: K₁: variação do torque elétrico para uma variação no ângulo do rotor, com fluxo concatenado constante no eixo direto; K₂: variação do torque elétrico para uma variação do fluxo concatenado no eixo direto, com ângulo do rotor constante; K₃: fator de impedância; K₄: efeito desmagnetizador de uma variação do ângulo do rotor, com tensão de campo constante; K₅: variação da tensão terminal para uma variação do ângulo do rotor, com fluxo concatenado constante.

3.0 - PROJETO DOS ESTABILIZADORES DE SISTEMA DE POTÊNCIA

O PSS é um equipamento que fornece um sinal adicional ao regulador de tensão para compensar os atrasos que ocorrem na malha do controle de tensão, cuja finalidade é melhorar o desempenho dinâmico dos sistemas de potência. A compensação de fase é realizada pelo uso de funções avanço-atraso, que fornecem avanço de fase sobre a escala de freqüência de interesse. O PSS está representado por diagramas de blocos na Figura 3. Os blocos representam: o ganho K do estabilizador; washout, ou filtro de baixa freqüência de corte; compensador avanço-atraso de fase, com dois circuitos compensadores, e o ganho K_e e atraso T_e do AVR.

FIGURA 3 - Modelo do AVR e PSS

O sistema foi modelado através de três barras geradoras, representando dois geradores das turbinas a gás (TG1 e TG2) e um gerador da turbina a vapor (TV), e a barra infinita como referência. A simulação para obtenção do fluxo de carga foi feita no software de análise de redes ANAREDE considerando a operação dos geradores sob condições nominais.

A partir do resultado do fluxo de carga e dos dados construtivos do gerador, foi desenvolvida uma metodologia de projeto para os estabilizadores da usina em estudo, utilizando o software MATLAB. Esta metodologia desenvolvida para o projeto é baseada na estimação do ângulo de atraso proporcionado pelo conjunto Gerador Síncrono, Excitatriz e Sistema Elétrico (GEP). O atraso de fase é determinado a partir da freqüência dominante de oscilação da Potência Elétrica gerada, mantendo o PSS desabilitado.

A freqüência de oscilação do sistema foi determinada através da análise através de espaço de estados tomando-se a parte imaginária do par de autovalores dominante com o sistema modulado sem PSS. Através da Equação 1 pode-se determinar o ângulo de atraso total do conjunto Gerador Síncrono, Excitatriz e Sistema Elétrico (GEP).

$$\frac{K_2 K_A / T_{d0} T_A}{s^2 + [(T_A + K_3 T_{d0}) / K_3 T_{d0} T_A]s + (K_6 K_A / T_{d0} T_A)}$$
(1)

Utilizando-se os dados construtivos das máquinas, obtém-se o resultado indicado na Tabela 1

	Turbina a gás	Turbina a vapor
Freqüência de oscilação [Hz]	0,897	1,127
Atraso do conjunto GEP	27,59º	47,03º
Ângulo total para compensação (FC = 100%)	27,59º	47,03º
Ângulo a ser compensado pelo circuito 1 do PSS	11,03º	18,81º
Ângulo a ser compensado pelo circuito 2 do PSS	16,55⁰	28,22 ^º

Tabela 1 – Ângulo de atraso do conjunto GEP.

O projeto do PSS baseia-se na determinação das constantes T_1 , T_2 , T_3 e T_4 de forma que o compensador proporcione um avanço de fase ao sinal de velocidade que reduza o atraso provocado pelo conjunto GEP. Através das Equações 2 podem-se determinar as constantes de tempo do primeiro circuito de avanço de fase. As constantes de tempo para o segundo circuito compensador são determinadas de forma análoga.

$$a = \frac{1 + sen \theta}{1 - sen \theta} \qquad T_2 = \frac{1}{\omega_{asc} \sqrt{a}} \qquad T_1 = aT_2 \qquad (2)$$

A constante de tempo do circuito *washout* é determinada de forma a garantir que o regulador de tensão não seja afetado para erros prolongados de baixa freqüência na velocidade (4)(5)(6). Para o PSS em estudo, desejam-se eliminar ruídos de freqüência 12 vezes menor do que a freqüência de oscilação. A Equação 3 ilustra o cálculo da constante de tempo do filtro *washout*.

$$T_q = \frac{1}{\frac{2\pi f_{osc}}{12}} \approx 1,5s \tag{3}$$

O ganho do PSS é ajustado em campo e contribui para diminuir o esforço do controlador (4)(5)(6). Nesse caso o ganho proposto foi determinado através de simulações digitais do projeto desenvolvido para a usina em estudo.

As Tabelas 2 e 3 comparam os parâmetros projetados para o PSS em estudo com os ajustes determinados em campo e hoje configurados nos AVR das máquinas.

Tapela 2 – Parametros do PS3	S – Turbina	a Gas.
------------------------------	-------------	--------

	K	<i>T</i> ₁	T_2	T3	T_4
ONS	10	0,12	0,04	0,20	0,04
Projetado	24	0,22	0,15	0,24	0,13

	K	<i>T</i> ₁	<i>T</i> ₂	T3	T ₄
ONS	2	0,30	0,04	0,60	0,08
Projetado	17	0,20	0,10	0,24	0,08

Tabela 3 – Parâmetros do PSS – Turbina a Vapor.

4.0 - ESTABILIDADE DINÂMICA ATRAVÉS ESPAÇO DE ESTADOS

O comportamento de um sistema de potência linearizado pode ser descrito através de um par de equações matriciais do tipo:

$$\Delta \dot{x} = A \cdot \Delta x + B \cdot \Delta u$$

$$\Delta y = C \cdot \Delta x + D \cdot \Delta u$$
(4)

Sendo: $\Delta x \neq 0$ vetor de estados de dimensão n; $\Delta y \neq 0$ vetor de saída de dimensão m; $\Delta x \neq 0$ vetor de entrada de dimensão r; A $\neq a$ matriz de estados n x n; B $\neq a$ matriz de controle n x r; C $\neq a$ matriz de saída m x n; D $\neq a$ matriz feedfoward m x r.

A estabilidade de um sistema não-linear pode ser determinada pelas raízes de sua equação característica, ou seja, pelos autovalores da matriz A. A determinação dos autovalores do sistema é dada pela Equação 5:

$$\det(A - \lambda \cdot I) = 0 \tag{5}$$

Sendo: λ é os autovalores da matriz A; I é a matriz identidade.

Cada autovalor corresponde a um modo de oscilação na reposta temporal do sistema. A estabilidade do sistema é determinada pelos autovalores da seguinte maneira: autovalores reais correspondem a modos não oscilatórios e autovalores complexos ocorrem em pares conjugados e cada par corresponde a um modo oscilatório. A parte real dos autovalores corresponde ao amortecimento da resposta enguanto a parte imaginária está

relacionada com a freqüência de oscilação. Já a estabilidade do sistema é dada pela parte real dos autovalores, o qual é tido como estável somente se todos os autovalores possuírem parte real negativa.

Outra matriz importante na análise do comportamento de sistemas por espaço de estados é a Matriz de Participação – P. Esta combina os autovalores direitos com os autovalores esquerdos para identificar a relação entre as variáveis de estado e os modos de oscilação e é dada pela Equação 6:

$$P = \begin{bmatrix} p_1 & p_2 & \dots & p_n \end{bmatrix} \qquad p_i = \begin{bmatrix} \phi_{1i} \cdot \Psi_{i1} \\ \phi_{2i} \cdot \Psi_{i2} \\ \vdots \\ \phi_{ni} \cdot \Psi_{in} \end{bmatrix} \qquad (6)$$

Sendo: Φ_{ki} = elemento do autovetor esquerdo Φ ; ψ_{ik} = elemento do autovetor direito Ψ .

5.0 - RESULTADOS OBTIDOS DA ANÁLISE DOS ESTABILIZADORES

5.1 Análise por Espaço de Estados

A análise do desempenho do PSS da usina na estabilidade do sistema de potência foi realizada pelo estudo do seu desempenho através da abordagem de espaço de estados. Para realizar a análise do comportamento dinâmico frente a pequenas perturbações dos geradores síncronos que fazem parte da usina, adotaram-se as seguintes considerações com o objetivo de que o estudo pudesse ser simplificado: analisaram-se os geradores da turbina a gás e turbina a vapor separadamente, ou seja, na análise o gerador em questão está conectado a uma barra infinita individualmente; o Sistema Elétrico Interligado foi representado como uma tensão e uma impedância, ambas invariáveis; o torque mecânico foi considerado constante durante toda análise e desprezaram-se os enrolamentos amortecedores.

Essa abordagem permite que determinemos os autovalores do sistema sob estudo e assim analisarmos sua estabilidade. Em nossa análise, os autovalores e a matriz de participação das turbinas foram determinadas em duas configurações diferentes: com o PSS desligado, ou seja, somente com o AVR como estabilizador do sistema, e com o PSS ligado. As Tabelas 4 a 7 mostram os valores encontrados para o PSS projetado.

Sem PSS	Com PSS
	$\lambda_1 = -32,69$
$\lambda_1 = -0,27 + 5,64i$	$\lambda_2 = -11,890 + 21,39i$
$\lambda_2 = -0,27 - 5,64i$	λ ₃ = - 11,89 - 21,39 <i>i</i>
$\lambda_3 = -25,05 + 11,632i$	$\lambda_4 = -1,69 + 2,64i$
$\lambda_4 = -25,05 - 11,63i$	$\lambda_5 = -1,69 - 2,64i$
	$\lambda_6 = -0,78$

Tabela 4 – Autovalores da Turbina a Gás.

					0.00	0.03	0.03	0.61	0.61	0.20	
0.51	0.51	0.01	0.01	$\Delta \omega_{\rm c}$	0.00	0.03	0.03	0.61	0.61	0.20	
0.51	0.51	0.01	0.01	18	0,00	0,05	0,05	0.16	0,01	0,20	
0,51	0,51	0,01	0,01		0,32	0,77	0,77	0,10	0,10	0,01	
0,05	0,05	1,21	1,21	$\Delta arphi_{\scriptscriptstyle fd}$	1,30	0,30	0,30	0,04	0,04	0,00	
0,01	0,01	1,19	1,19	Δu_1	0,02	0,05	0,05	0,52	0,52	1,43	
λ_1	λ_{1}	λ_{2}	λ_{1}		0,24	0,47	0,47	0,21	0,21	0,02	
1	2	3	4		λ_1	λ_2	λ_3	$\lambda_{_4}$	λ_5	λ_6	

Tabela 6. Autovalores da Turbina a Vapor.

Sem PSS	Com PSS
	$\lambda_1 = -42,08$
$\lambda_1 = -37,34$	$\lambda_2 = -11,62 + 23,93i$
$\lambda_2 = -0,20 + 7,08i$	$\lambda_3 = -11,62 - 23,93i$
$\lambda_3 = -0,20 - 7,08i$	$\lambda_4 = -1,60 + 3,27i$
$\lambda_4 = -12,86$	$\lambda_5 = -1,60 - 3,27i$
	$\lambda_6 = -0,73$

Tabela 7. Matriz de Participação da Turbina a Vapor sem PSS.

					0,00	0,04	0,04	0,55	0,55	0,10	$\Delta \omega_r$
0,00	0,51	0,51	0,03	$\Delta \omega_r$	0,00	0,04	0,04	0,55	0,55	0,10	$\Delta\delta$
0,00	0,51	0,51	0,03	$\Delta\delta$	0,14	0,61	0,61	0,22	0,22	0,01	$\Delta \psi_{fd}$
0,52	0,03	0,03	1,58	$\Delta \psi_{_{fd}}$	1,05	0,14	0,14	0,04	0,04	0,00	Δv_1
1,52	0,00	0,00	0,53	$\Delta \nu_1$	0,00	0,04	0,04	0,30	0,30	1,21	$\Delta \nu_2$
λ_1	λ_2	λ_3	$\lambda_{_4}$		0,10	0,46	0,46	0,10	0,10	0,00	$\Delta \nu_s$
					λ_1	λ_{2}	λ_3	$\lambda_{_4}$	λ_5	λ_{6}	

Os autovalores mostram que o sistema é estável em ambas as máquinas, tanto com o PSS como sem, uma vez que a parte real desses é sempre negativa. Porém, pode-se ver que os modos de oscilação são alterados com a adição do PSS bem como o grau de amortecimento do sistema.

Para a Turbina a Gás com o PSS desligado percebe-se que existem dois modos de oscilação, um a 0,90 Hz, relacionado com a variação da velocidade e ângulo do rotor do gerador e outro, a 1,85 Hz, associado ao campo do enrolamento de rotor e ao AVR. Esse último modo possui um amortecimento grande, provocando seu rápido decaimento. Já para a Turbina a Vapor existe somente um modo de oscilação na freqüência de 1,13 Hz associada à velocidade e ao ângulo do rotor. Nem a variação do fluxo no enrolamento de campo nem a variação da tensão pelo AVR produzem oscilações, estando nesse caso relacionados com amortecimentos puros.

Com a adição do PSS ao sistema, nota-se que a estabilidade a pequenas perturbações melhora em ambas as turbinas. Na TG o PSS está associado aos autovalores 2 e 3, cujo modo de oscilação é 3,40 Hz, enquanto o enrolamento de campo e AVR são responsáveis pelo dois modos não oscilatórios, autovalores 1 e 6. Da mesma maneira, na TV o PSS está associado aos autovalores 2 e 3, de freqüência 3,81 Hz. Em ambas turbinas as oscilações oriundas do PSS decaem rapidamente devido ao alto amortecimento mostrado pelos seus autovalores associados.

Outra maneira de analisarmos a influência do PSS na estabilidade do sistema é através da constante de sincronização – K_s e da constante de amortecimento – K_d oriundas de uma abordagem por função de transferência, obtidos dos diagramas de blocos da Figuras 2 e 3. A Tabela 8 resume os valores encontrados para ambas as turbinas.

A adição do PSS produz o mesmo efeito em ambas às turbinas que é o aumento significativo do torque de amortecimento do sistema – K_d tornando o sistema mais resistente e estável quando sob a influência de pequenas perturbações oscilatórias. Ocorre a diminuição do torque de sincronismo – K_s . Entretanto, o valor final do torque de sincronismo permanece positivo uma vez que a constante K1 é maior que a soma de K_{SAVR} e K_{SPSS} , fazendo com que as unidades permaneçam sincronizadas com o sistema.

	Turbin	a a Gás	Turbina	a Vapor
Parâm	Sem	Com	Sem	Com
Falaiii.	PSS	PSS	PSS	PSS
ω_n	5,64	3,14	7,09	3,85
ω_d	5,64	2,64	7,08	3,48
ζ	0,05	0,54	0,03	0,43
<i>K</i> 1	1,73	1,73	1,43	1,43
KSAVR	- 0,36	- 0,38	- 0,10	- 0,13
K _{SPSS}	-	- 0,93	-	- 0,95
Ks	1,38	0,43	1,33	0,35
KDAVR	8,90	10,52	4,02	6,27
KDPSS	-	44,46	-	25,71
K _D	8,90	54,98	4,02	31,99

Tabela 8. Influência AVR e PSS na Estabilidade do Sistema.

5.2 Análise com pertubações

Uma segunda abordagem na análise do desempenho do PSS foi realizada através da utilização de simulações no software ANATEM do CEPEL. Além de verificar o desempenho do sistema utilizando o PSS calculado pela ferramenta proposta, comparou-se também com o desempenho utilizando os parâmetros ajustados no comissionamento das unidades.

Dentre as contingências escolhidas para a análise estão rejeições de reativo pelo sistema, aberturas de linhas de grande relevância na estabilidade do sistema Norte-Nordeste e rejeições de geração tidas como fundamentais para região.

A primeira contingência é mostrada na Figura 4. O gráfico mostra o comportamento das turbinas quando da aplicação de um degrau de 0,05 [pu] na referência de tensão do AVR. Percebe-se que sem o PSS tanto a Turbina a Gás quanto a Turbina a Vapor apresentam oscilações que poderiam levar perda do sincronismo das máquinas. A ação do PSS faz com que essas oscilações sejam amortecidas bem mais rapidamente e na comparação entre os PSS, o calculado pelo software desenvolvido demonstrou maior eficiência.

Os segundo e terceiro tipos de contingências referem-se a modificações no SIN, tanto abertura de linhas quanto retirada de geradores. Tendo como base a importância dos componentes e a freqüência de incidentes, as contingências escolhidas foram: abertura da linha de 500 kV entre as subestações Quixadá e Milagres e rejeição de um gerador da usina UHE Paulo Afonso IV.

Figura 4. Degrau de 5% na Referência do AVR.

As Figuras 5 e 6 mostram o comportamento das unidades da usina frente às perturbações listadas.

Figura 5. Abertura LT 500 kV Quixadá - Milagres.

Figura 6. Rejeição de 1 Gerador de Paulo Afonso IV.

O ajuste proposto para o PSS da usina em estudo mostra-se eficiente no amortecimento das oscilações, apresentando amplitude e tempo de acomodação reduzidos, conforme observado pelas Figuras 5, 6 e 7. Destaca-se que o PSS calculado pelo software apresentou melhores resultados quando comparado com os ajustes hoje em operação na usina.

6.0 - CONCLUSÃO

A análise do sistema através de Espaço de Estados mostrou claramente a influência de cada componente do gerador na estabilidade dinâmica do sistema estudado. Ficou evidenciado que somente o AVR não é capaz de fornecer o amortecimento necessário a fim de assegurar a confiabilidade do sistema e que o PSS executa esse papel com propriedade. A análise da constante de amortecimento do sistema, KD, bem como na matriz de Participação reafirmaram a eficiência do PSS em estabilizar o sistema frente a pequenas perturbações..

Já o projeto do PSS através do software desenvolvido demonstrou-se eficiente na determinação de seus parâmetros, sendo até mesmo mais eficaz na diminuição das oscilações do sistema que o ajuste feito no comissionamento.

A simulação de falhas no SIN, seja através de perda de linhas ou geração, possibilitou validar o projeto não somente pelo seu comportamento frente a degraus de tensão, mas também quando o sistema for submetido a desligamentos importantes para a região.

O projeto de estabilizadores utilizando a modelagem de controladores feita a partir dos equipamentos efetivamente instalados levando em conta a operação real da usina e verificação dos resultados através do ANAREDE, com a chegada do gás liquefeito e autorização final da ANEEL, levarão a implementação da operação com as margens de segurança do sistema maximizadas.

7.0 - REFERÊNCIAS BIBLIOGRÁFICAS

(1) KUNDUR, P. Power System Stability and Control, McGrawHill, 2^ª ed, New York, 1994.

(2) ANDERSON, P. M. E FOUAD, A. A. Power System Control and Stability, IEEE, New York, 1994.

(3) DE MELLO, F. P. E CONCORDIA, C. Concepts of Synchronous Machine Stability as Affected by Excitation Control, IEEE Transactions on Power Apparatus and Systems, Vol. PAS – 88, pp. 316-329, 1969.

(4) MOTA, W. S. Simulação de Transitórios Eletromecânicos em Sistemas de Potência, EPGRAF, Vol. I. Campina Grande, 2006 .

(5) SOUZA, F. M. F. Modelagem de Reguladores de Tensão e Estabilizadores de Sistemas de Potência de Usinas Termelétricas a Ciclo Combinado. Dissertação de mestrado em engenharia elétrica - Universidade Federal do Ceará, 2007.

(6) SOUZA, F. M. F.; DANIEL, E. L. F., SILVA JÚNIOR, J. N. R., NASCIMENTO, J. A.; CAMPOS, J. C. T., FALCUCCI, M. Modelagem de Reguladores de Tensão e Estabilizadores de Sistemas de Potência de Usinas Termelétricas a Ciclo Combinado. Anais do IX Encontro de Modelagem Computacional. Belo Horizonte: CEFET-MG e IPRJ/UERJ, 2006, v. 1. p. 1-9.

(7) SOUZA, F. M. F., DANIEL, E. L. F., NASCIMENTO, J. A., CAMPOS, J. C. T., SILVA JÚNIOR, J. N. R., FALCUCCI, M. Modelagem de Estabilizadores de Sistemas de Potência de Usinas Térmicas a Ciclo Combinado. Anais do V Seminário Nacional de Controle e Automação. Salvador: 2007.

(8) NASCIMENTO, J. A.; CAMPOS, J. C. T.; DANIEL, E. L. F.; SOUZA, F. M. F.; SILVA JÚNIOR, J. N. R.; FALCUCCI, M.; MAISONNAVE. Modelagem dos Parâmetros dos Estabilizadores de Sistema de Potência de uma Termelétrica a Ciclo Combinado. Anais do IV Congresso de Inovação Tecnológica em Energia Elétrica – IV CITENEL. Araxá, MG: 2007.

8.0 - DADOS BIOGRÁFICOS

J. A. do Nascimento: http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4760879P8.

- J. C. T. Campo: http://buscatextual.cnpq.br/buscatextual/visualizacv.jsp?id=K4794209E0
- M. Falcucci: Central Geradora Termelétrica Fortaleza, mfalcucci@endesabr.com.br.

P. R. Maisonnave: ENDESA Geração Brasil, pmaisonnave@endesabr.com.br