FILTRO ATIVO TRIFÁSICO PARA QUALIDADE DE ENERGIA ELÉTRICA: COMPENSAÇÃO E BALANCEAMENTO

C. G. Bianchin, Electronic System Division, LACTEC, R. Demonti, Electronic System Division, LACTEC and J. S. Omori, Paranaense Electric Company, COPEL

Abstract – O presente trabalho trata da implementação de um filtro ativo trifásico paralelo empregado para compensar harmônicas de corrente, corrigir a defasagem entre tensão e corrente gerada por cargas capacitivas ou indutivas e, pela implementação da estratégia de controle aqui descrita, realizar o balanceamento das correntes das fases, minimizando a corrente de neutro.

Apresentam-se as justificativas para a escolha desta topologia e a estratégia de controle adotada além da análise matemática, dos procedimentos de cálculo, resultados de simulação e de laboratório uma vez que, como etapa final do trabalho, foi construído um protótipo com potência de 10 kVA.

Palavras-chave – Correção de Harmônicas, Filtro Ativo, Inversor de Quatro Braços.

I. INTRODUÇÃO

A filtragem ativa consiste em medir as correntes harmônicas de uma ou mais fases da rede e gerar ativamente um espectro com correntes harmônicas em oposição de fase em relação àquelas medidas. Assim as harmônicas originadas normalmente por cargas não-lineares são canceladas. A filtragem ativa difere da passiva, a qual utiliza capacitores e/ou indutores para cancelamento de harmônicas específicas; além de ser dependente da impedância do sistema e não dispor de módulos de controle.

Os filtros ativos já são empregados com êxito por consumidores e por fornecedores de energia elétrica em diversos países. Os consumidores os empregam para eliminar das suas instalações os problemas relativos à circulação de correntes harmônicas, além de balancear as correntes de fase e elevar o fator de potência da instalação. Os fornecedores utilizam filtros ativos, sobretudo para reduzir deformações de tensão e para elevar o amortecimento de oscilações, melhorando a estabilidade de operação do sistema elétrico.

Em [1] há relatos de uso de filtros ativos incorporados, pelos próprios fabricantes, a equipamentos que tradicionalmente originam grandes correntes harmônicas. Futuramente quando recomendações sobre as limitações de distorções harmônicas tornarem-se normas obrigatórias, aparelhos e equipamentos eletrônicos deverão estar preparados, seja com técnicas de controle apropriadas ou com a incorporação de filtros ativos de potência.

Este trabalho foi apoiado pela Companhia Paranense de Energia Elétrica – COPEL, à qual nós agradecemos.

Carlos Gabriel Bianchin (bianchin@lactec.org.br) e Rogers Demonti (rogers@lactec.org.br) trabalham no LACTEC – Instituto de Tecnologia para o Desenvolvimento.

Julio Shigeaki Omori trabalha na COPEL (julio.omori@copel.com).

Os filtros ativos podem ser do tipo paralelo ou série [2, 3, 4]. Filtros série são restauradores de tensão, têm a função de eliminar distorções nas tensões do sistema elétrico. Filtros ativos do tipo paralelo são restauradores de corrente, têm a função de eliminar as componentes harmônicas das correntes elétricas. Existem ainda os filtros híbridos, que combinam as duas funções [2, 3]. Este trabalho trata unicamente dos filtros paralelos, que funcionam como fontes de corrente conectadas em derivação com o sistema elétrico. Sua função é injetar no ponto de conexão do sistema elétrico com a carga (PAC), correntes de compensação capazes de atenuar ou eliminar correntes harmônicas originadas por cargas não lineares.

II. DEFINIÇÃO DA TOPOLOGIA DO CONVERSOR

O inversor utilizado neste projeto é alimentado em tensão. Entre as topologias possíveis para o inversor de tensão encontram-se o inversor de três braços e o inversor de quatro braços. A Figura 1 ilustra o segundo tipo.

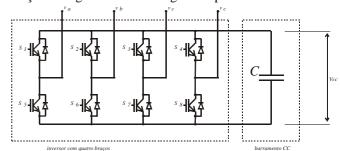


Figura 1: Inversor alimentado em tensão com quatro braços.

Em [5] pode-se encontrar diversas técnicas de modulação para estas estruturas.

O inversor de três braços é apropriado para sistemas trifásicos equilibrados, onde as tensões fornecidas pelo inversor e as correntes drenadas pela carga são equilibradas. É possível utilizar essa topologia em sistemas desequilibrados através da adição de um condutor neutro ao centro do barramento de tensão contínua v_n da Figura 1, porém isto pode acarretar problemas de controle e estabilidade, uma vez que é preciso realizar o balanceamento das tensões dos dois capacitores do barramento de tensão contínua. Além disso, as correntes de neutro são drenadas ou injetadas diretamente nos capacitores, o que requer elevados valores de capacitâncias. Outra desvantagem desse conversor, quando usado com o condutor neutro, é a pobre utilização da tensão do barramento de tensão contínua [6].

Os inversores com quatro braços são menos conhecidos, porém vêm sendo apontados como a topologia mais apropriada para aplicações em sistemas desequilibrados [7]. A existência de um braço exclusivo para o condutor neutro torna possível o controle independente da corrente de neutro fornecida pelo inversor. Além disso, o inversor não requer a

adição de um condutor ao barramento de tensão contínua, o que significa que o capacitor não estará conectado diretamente ao condutor neutro. Isso torna possível reduzir o valor da capacitância e ainda dispensa a necessidade de um controlador para realizar o balanceamento das tensões. Um sistema de controle de correntes com esse tipo de inversor é mais robusto do que seu concorrente com três braços.

III. ESTRATÉGIA DE CONTROLE

Grande parte da literatura técnica sobre filtros ativos trata unicamente de sua aplicação em sistemas trifásicos equilibrados. Contudo, é crescente o número de instalações elétricas dotadas de um condutor neutro com desequilíbrio entre as correntes de fase, o qual é causado principalmente pela presença significativa de cargas monofásicas [1].

O filtro é conectado à instalação elétrica através de indutores de acoplamento, pelo qual circulam as correntes sintetizadas pelos controladores de corrente, caracterizando o filtro ativo como fonte de corrente controlada. A estratégia para produzir o correto controle compõe-se de duas partes básicas: um sistema de identificação das referências e um sistema de controle de correntes (Figura 2).

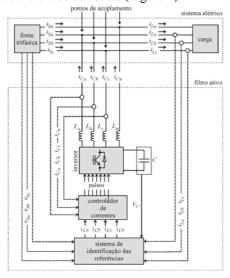


Figura 2: Estratégia de controle para filtragem ativa de harmônicas.

A função do sistema de identificação das referências é determinar as correntes de compensação que devem ser injetadas pelo filtro ativo no sistema elétrico. Quando o filtro ativo é usado em sistemas desequilibrados com neutro, o compensador tem ainda a função de determinar as correntes de compensação que tornam possíveis o balanceamento das fases e a eliminação da corrente de neutro.

O sistema de geração de referências é composto por uma função dentro do processador digital de sinais que gera, a partir das tensões de entrada, o sistema trifásico de referências baseado em PLL (PLL digital), que permitirá composição de correntes senoidais puras. Depois esse sistema é comparado com as correntes de carga e a partir disso, inicia-se o processo de controle PWM das chaves semicondutoras.

Para alcançar estes objetivos será utilizada a estratégia de compensação baseada na síntese de correntes senoidais,

equilibradas e em fase com as tensões fundamentais da fonte. Isto que garantirá uma corrente no PAC com baixa distorção harmônica e elevado fator de potência, além de minimizar a corrente de neutro.

A síntese das correntes do filtro é realizada com o emprego de controladores do tipo proporcional e integral (PI) que atuam em conjunto com um modulador de largura de pulsos.

A Figura 3 mostra o esquema simplificado de um sistema de controle de correntes. Rigorosamente cada um dos reguladores proporcionais e integrais recebe o nome de controlador, mas será dado ao sistema completo o nome de controlador de correntes, simplificando a nomenclatura adotada.

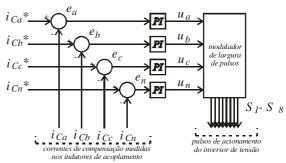


Figura 3: Controlador de correntes do filtro ativo.

No esquema da Figura 3 existem quatro controladores PI que geram referências de corrente para um modulador de largura de pulsos. Este, por sua vez, gera os pulsos de acionamento do inversor utilizado para a síntese das correntes de compensação. Os sinais de tensão são gerados pelos controladores PI com base nos erros entre as correntes de referência e as correntes medidas.

Estes sinais são aplicados aos interruptores do inversor, neste caso, transistores IGBT. O sistema opera em malha fechada procurando fazer com que as correntes nos indutores sejam o mais próximo possível das correntes de referência. Os controladores PI operam no sentido de minimizar os erros entre as referências e as correntes efetivamente sintetizadas nos indutores *La* até *Ln* (Figura2).

Neste trabalho o controle do filtro foi implementado digitalmente no processador DSP TMS320F2812, fabricado pela Texas Instruments. A freqüência de operação do sistema de amostragem e também do controlador PWM, é de 12 KHz, e ambas estão sincronizadas. A Figura 4 apresenta estratégia de controle mais detalhada implementada no DSP.

A estratégia de controle deve sintetizar uma corrente (*if*) na saída do filtro, que assegure uma baixa distorção a corrente (*is*) no PAC, considerando que a corrente na carga (*ic*) possua distorção de até 50%. Para manter alto fator de potência, o sinal de tensão no PAC é utilizado como referência. A tensão no capacitor *C* do inversor é monitorada para garantir o balanço de potência do sistema.

IV. ANÁLISE MATEMÁTICA

A abordagem matemática contemplou todos os procedimentos para implementação do controle do inversor trifásico de quatro braços operando como filtro ativo de harmônicas. Os requisitos de atenuação de harmônicas até a 21^a ordem, redução da corrente de neutro (desequilíbrio entre as fases) e redução da defasagem entre tensão e corrente nas três fases foram as principais considerações no projeto.

No filtro de harmônicas, dois controladores PI são empregados; o controlador PI de corrente de rápida resposta e o controlador PI do elo CC (Corrente Contínua), de resposta mais lenta.

O controlador PI do elo CC foi calculado em função das grandezas e parâmetros descritos a seguir:

- Valor do capacitor do elo CC;
- Valor da tensão eficaz de fase do PAC;
- Fundo de escala dos sensores de tensão do elo CC e tensões CA;
- Valor de tensão desejado no elo CC;
- Ganho do conversor analógico-digital;

A. Tensão desejada no elo CC

Considerando o inversor bidirecional para cargas balanceadas, a tensão do elo CC deve ser maior que o valor de pico da tensão de linha da rede. Desta forma, para assegurar a síntese da corrente no filtro, a tensão no elo CC (*Vcc*) deve ser 3/2 maior [8] que o pico da máxima tensão de fase rms, ou seja:

$$Vcc \ge \frac{3}{2} Va\sqrt{2}\sqrt{3} \tag{1}$$

B. Capacitor do elo CC

O capacitor de elo CC é responsável por algumas características específicas, tais como: auxiliar no balanço de energia em condições de transitórios na carga, garantir uma elevada taxa de variação da corrente de saída do inversor e, possibilitar a circulação de correntes de seqüência negativa pelo inversor.

No caso da topologia adotada para o inversor (4 braços), as correntes de seqüência zero (homopolares) são manipuladas pelo quarto braço, de forma que a tensão do capacitor do elo CC sofra influência apenas das harmônicas e das componentes de seqüência negativa, especialmente na freqüência fundamental (maior potência).

Considera-se que as tensões da rede trifásica sejam equilibradas e que a flutuação de tensão CC é muito menor do que a tensão total do elo $\Delta Vcc << Vcc$, sendo ΔVcc o valor de pico da ondulação de tensão CC. A parcela mais significativa desta ondulação é proporcional à oscilação de potência no inversor, devido às correntes de seqüência negativa:

$$P_{neg} = \begin{bmatrix} v_{an} & v_{bn} & v_{cn} \end{bmatrix} * \begin{bmatrix} il_{aneg} & il_{bneg} & il_{cneg} \end{bmatrix} \cong \stackrel{\sim}{P}_{cc}$$
 (2)

A partir de (2) é possível mostrar que a potência de sequência negativa tem característica oscilatória em 2ϖ e pode ser escrita como:

$$P_{neg} = \frac{3}{2} Va\sqrt{2} \cdot I_{neg_{-}pk} \cos(2\varpi t + \phi)$$
 (3)

onde: I_{neg_pk} é o valor de pico da corrente de sequência negativa, a qual se deseja que o filtro ativo suporte.

Portanto, a flutuação de energia (pico-pico) provocada pela carga é:

$$\Delta E_{pp} = \frac{3Va\sqrt{2} \cdot I_{neg_pk}}{2\varpi} = \frac{1}{2}C(Vcc + \Delta Vcc)^{2}$$
$$-\frac{1}{2}C(Vcc - \Delta Vcc)^{2} = 2C \cdot Vcc \cdot \Delta Vcc$$
 (4)

Desta forma, o capacitor mínimo para satisfazer o valor imposto para ΔV_{CC} , é:

$$C_{\min} = \frac{3 \cdot Va\sqrt{2} \cdot I_{neg_pk}}{4\pi \cdot Vcc \cdot \Delta Vcc} \tag{5}$$

C. Dimensionamento dos indutores de acoplamento

Os indutores de acoplamento, entre o inversor e a rede, devem operar em uma ampla faixa de freqüências, o que deve ser levado em consideração no projeto para definição das características construtivas do mesmo e do material do núcleo.

A especificação do valor da indutância é feita de forma a satisfazer critérios e funções específicas, tais como: limitar a ondulação da corrente na saída do conversor, operando como filtro passa-baixas de primeira ordem, sem provocar uma queda de tensão demasiada sobre seus terminais. Adicionalmente o indutor não deve limitar demasiadamente a taxa de variação da corrente do conversor, o que limitaria a atuação do filtro ativo para compensação das correntes harmônicas de ordem mais alta.

Deve haver um compromisso entre a tensão no barramento CC e o valor do indutor. Valores elevados de tensão possibilitam obter altos di/dt para cancelar as harmônicas completamente, contudo isto também acarreta valores elevados para a ondulação da corrente. Uma vez escolhida a tensão, deve-se proceder ao cálculo dos indutores de acoplamento. Diversos trabalhos como [9, 10, 11], estabelecem critérios para o cálculo. Assim segundo [12], a taxa de crescimento (di/dt) da corrente gerada pelo filtro ativo deve ser maior do que a taxa de crescimento das correntes harmônicas da carga. Considerando a Lei de Tensões de Kirchhoff, para uma das fases do sistema (Figura 2 e 3), resulta:

$$-\sqrt{2}\sqrt{3}\cdot Va - 2La\left(\frac{di}{dt}\right) + Vcc = 0 \tag{6}$$

Logo, uma vez que se deseja que o valor da indutância permita que a taxa de variação da corrente do filtro ativo (di/dt), seja maior do que a taxa de variação das correntes harmônicas da carga, faz-se:

$$La = \frac{Vcc - \sqrt{2}\sqrt{3} \cdot Va}{2\frac{di}{dt}} \tag{7}$$

D. Controladores PI de tensão e corrente

Tanto para o projeto do controlador de corrente, quanto para o de tensão, é considerado o sistema a seguir:

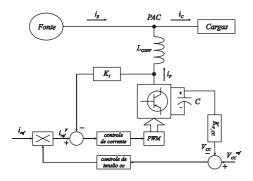


Figura 4: Diagrama de blocos do sistema a ser analisado no projeto dos controladores de tensão e corrente.

Como não há fonte de energia no capacitor C, o sistema deve observar e manter constante esta tensão. É necessário também que a corrente de saída do filtro sintetize as referências definidas pela estratégia de compensação. Assim o sistema pode ser configurado como dois sub-sistemas de controle: um para a tensão em C e outro para as correntes harmônicas de saída. Nota-se que o controlador da tensão do capacitor C é responsável por modular o valor da referência de corrente do filtro ativo, de forma a manter fixa esta tensão.

Desta forma, a função de transferência do sistema físico do controle da tensão pode ser representada pela função capacitiva $\frac{1}{sC}$, enquanto a função de transferência do sistema de controle da corrente de saída é dada pela função $\frac{1}{sL_{conv}}$ [13].

Adicionalmente devem ser considerados os ganhos dos sensores de tensão e corrente. Por fim, dependendo da técnica de modulação adotada é definido o ganho do conversor PWM.

No caso do inversor trifásico utilizado, o conjunto modulador PWM - conversor é entendido, do ponto de vista de controle, como um ganho de tensão igual a:

$$K_{PWM} = \frac{Vcc}{2} = 250 \tag{8}$$

A Figura 5 ilustra o esquema básico utilizado para o projeto do controlador de corrente. Observa-se que a corrente na saída do filtro ativo é convertida em tensão e escalonada através do sensor de corrente (bloco K_{SI}) e da placa de condicionamento. A seguir é então convertida pelo conversor A/D (bloco K_{DSP}) em escala p.u.

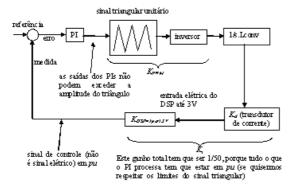


Figura 5: Diagrama de blocos da planta com o controlador de corrente.

Considerando este esquema, as funções de transferência sem (G_{SC}) e com (G_{CC}) o controlador PI são expressas por,

$$G_{SC}(s) = K_i K_{PWM} \frac{1}{sL_{conv}} = \frac{\varpi_{SC}}{s}$$
 (9)

$$G_{CC}(s) = G_{SC}(s) \cdot PI(s) = \frac{\varpi_{CC}}{s}$$
 (10)

respectivamente.

Logo é possível calcular os ganhos proporcional (K_P) e integral (K_I) dos reguladores PI através de [14]:

$$K_P = \frac{\varpi_{CC}}{\varpi_{SC}} = \frac{f_{CC}}{f_{SC}} \tag{11}$$

$$K_I = \frac{K_P \cdot \varpi_{CC}}{\tan(mf)} Ta \tag{12}$$

onde fcc é a frequência da banda passante em Hz e mf é a margem de fase estipulada para o sistema em malha fechada com o regulador PI. Ta é o período de amostragem do sistema digital.

Em geral, a banda-passante do controlador de corrente de um filtro ativo não pode ser baixa para impossibilitar a síntese das correntes harmônicas necessárias, nem alta para tornar o sistema instável ou ultrapassar os critérios de estabilidade de Nyquist. Quanto à margem de fase foram mantidos valores entre 70° e 85°.

E. Controlador de tensão CC

Considerando que a dinâmica da tensão do elo CC do inversor é bastante lenta, é relativamente fácil obter um controlador PI que satisfaça as condições de dinâmica e estabilidade. O cálculo do ganho do conversor visto pelo controlador de tensão é feito pelo balanço de potência do conversor. Operando como filtro ativo paralelo em condição de regime permanente o conversor não deve absorver nem entregar potência ativa. Ou seja a potência ativa calculada no lado CA do conversor deve ser a mesma daquela calculada do lado CC do mesmo. Desta forma os ganhos do PI podem ser calculados por expressões semelhantes àquelas utilizadas para o controle de corrente.

F. Diagrama de Root Locus

Considerando as equações de controle para o filtro ativo paralelo, desenvolvidas até então, o diagrama de *Root Locus* para o referido controle está mostrado na Figura 6, para o controlador PI de corrente.

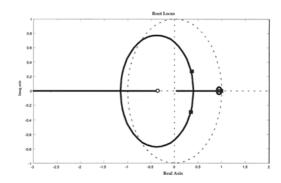


Figura 6: Root Locus para controle de corrente

Para o controle de tensão, que possui largura de banda menor, ou seja, é um sistema que foi desenvolvido para ser lento, o diagrama de *Root Locus* está mostrado na Figura 7, abaixo. Por ele nota-se que o sistema não possui capacidade de resposta rápida, o que é esperado, pois o mesmo modula as referências de corrente para compensação. Caso essas referências sofram oscilações, as correntes que serão compensadas também apresentarão tais oscilações.

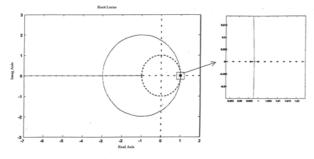


Figura 7: Root Locus para controle de tensão

Considerando que a dinâmica da tensão do elo CC do inversor é bastante lenta, é relativamente fácil obter um controlador PI que satisfaça as condições de dinâmica e estabilidade. O cálculo do ganho do conversor visto pelo controlador de tensão é feito pelo balanço de potência do conversor. Operando como filtro ativo paralelo em condição de regime permanente o conversor não deve absorver nem entregar potência ativa. Ou seja a potência ativa calculada no lado CA do conversor deve ser a mesma daquela calculada do lado CC do mesmo. Desta forma os ganhos do PI podem ser calculados por expressões semelhantes àquelas utilizadas para o controle de corrente.

V. PROCEDIMENTO DE PROJETO

Nesta seção discutem-se os critérios básicos para o dimensionamento dos componentes do filtro ativo paralelo. As condições em que o filtro ativo é utilizado e que tipo de carga o mesmo é capaz de compensar são descritas.

O sistema é trifásico com condutor neutro. A tensão de fase da rede Va=127 V e freqüência de 60 Hz. As cargas não-lineares produzem correntes com até 50% de distorção harmônica e desequilíbrios de seqüência negativa. As cargas apresentam uma potência de aproximadamente 10 kVA, o que resulta em uma previsão de correntes da ordem de 26 A;

A tensão do elo CC é definida conforme a eq. (1) em 500 V, com Va = 127 V + 5%.

O capacitor do barramento CC é dimensionado conforme a eq. (5) em 3,6 mF, sendo I_{neg_pk} calculado em 50 A e ΔVcc = 10 V.

Considerando-se uma derivada de corrente de 50 kA/s e uma tensão no barramento de 500 V, obtém-se, utilizando a eq. (7), um valor de 1,9 mH.

VI. RESULTADOS DE SIMULAÇÃO

Foram realizadas diversas simulações (Figura 8) para testar a estratégia de controle e verificar as condições estáticas e dinâmicas dos parâmetros do filtro.

A seguir apresentam-se os resultados de uma simulação onde são consideradas várias situações problemáticas que

podem ocorrer com a rede elétrica e suas cargas, inclusive a presença de tensão distorcida pela quinta harmônica na entrada. A carga é composta por um retificador trifásico sem capacitor, um retificador monofásico com capacitor na fase A, e um resistor na fase B, representando uma situação bastante desequilibrada das correntes das fases.

A freqüência de chaveamento (amostragem) é de 12 kHz, os indutores de saída são de 2 mH e a tensão do elo CC é de 500 V.

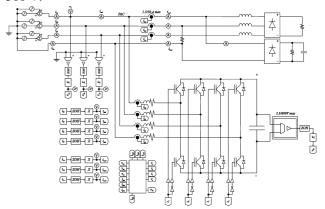


Figura 8. Circuito simulado exemplificando um conjunto de situações adversas da carga e da rede.

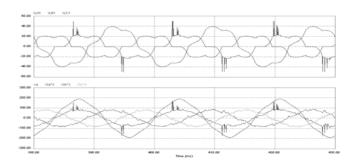


Figura 9: Correntes das cargas (superior) e correntes na rede com tensão na fase A (inferior).

Observa-se na Figura 9 que, mesmo para esta situação extrema que combina distorção harmônica das correntes, desequilíbrios e distorção da tensão de entrada, as correntes de saída estão equilibradas e com conteúdo harmônico reduzido.

VII. RESULTADOS EXPERIMENTAIS

A seguir encontram-se os resultados da operação em laboratório do filtro ativo para compensação de seis cargas que compõem uma situação bastante severa de geração de harmônicas e desbalanço de correntes.

A carga total é de 11,2 kVA e o diagrama de ligações é apresentado na Figura 10. Esta configuração de cargas levou o filtro próximo aos limites de proteções de corrente nos braços do inversor. A potência de projeto deste filtro é de 10 kVA

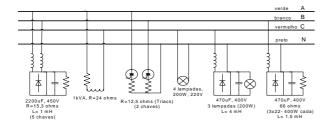


Figura 10: Diagrama esquemático das cargas utilizadas para um dos testes de laboratório.Carga desbalanceada e não-linear – 11.200 VA.

As medições foram realizadas com um analisador de qualidade e um osciloscópio de 4 canais.

Notar nas Figuras 11 e 12 o comportamento completamente distorcido das cargas nas 3 fases (Figura 11) e também considerando a corrente de neutro (Figura 12). Vale lembrar que a existência da corrente de neutro implica em harmônicas de seqüência zero.

Figura 11: Tensão da fase A, correntes da carga nas fases A, B, C (10mV/A).

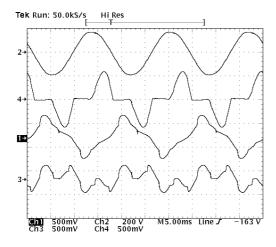


Figura 12: Tensão da fase A, correntes da carga nas fases A, B e no neutro (10mV/A).

Na Figuras 13, 14 e 15 tem-se o comportamento das cargas nas 3 fases, porém, com a operação do filtro ativo paralelo perfazendo o fornecimento/absorção de reativos, equilibrando a carga e conseqüentemente reduzindo a

corrente de neutro a valores próximos de zero. A corrente de neutro pode ser visualizada já com a operação do filtro ativo paralelo na Figura 14 (canal 3, abaixo).

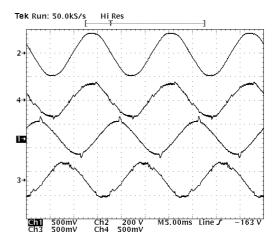


Figura 13: Tensão da fase A, correntes da rede nas fases A, B, C (10mV/A) com o filtro operando.

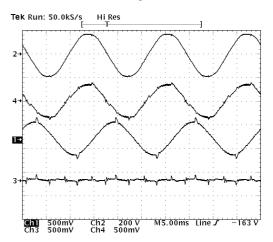


Figura 14: Tensão da fase A, correntes da rede nas fases A, B, C (10mV/A) com o filtro operando.

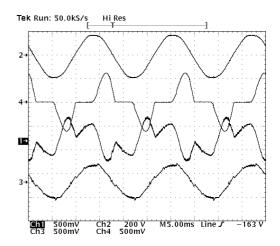


Figura 15: Fase A: tensão, corrente da carga, corrente de compensação (filtro) e corrente da rede compensada.

Vale a pena destacar a Figura 15, pois nela pode-se notar o comportamento da corrente de carga em uma fase (canal

4), da corrente compensada, fornecida pelo filtro ativo paralelo (canal 1) e a corrente que o sistema está entregando (canal 3, abaixo), que está em fase com a tensão da fase (canal 2, em cima), e com formato senoidal.

Tabela 1: Sumário dos resultados experimentais.

Fases	S (kVA)	FP	Irms (A)	Ipico (A)	DHT (%)
A – carga	3,7	0,59	28,4	55,4	50,1
A - rede	3,0	0,99	23,2	34,6	7,2
B – carga	3,1	0,77	24,1	43,3	27,8
B – rede	3,0	0,99	23,5	40,2	7,4
C – carga	4,4	0,87	33,8	62,6	38,2
C – rede	3,0	0,99	23,4	35,2	7,8
N – carga			16,2	27,4	
N-rede			2,2	7,6	

A tabela 1 indica a potência aparente (S), fator de potência (FP), corrente eficaz (rms), corrente de pico e a distorção de corrente para cada um dos condutores de fase e de neutro, considerando apenas a carga e depois a rede (PAC) com o filtro ativo operando.

Observar que os kVA da carga diminuem em função da melhora no fator de potência (0,99). A distorção de corrente com o filtro ligado é menor que 8%. Tanto os valores eficazes, quanto os valores de pico são equilibrados com a compensação. A corrente de neutro é bastante atenuada pela operação do filtro.

Observar que a potência e conseqüentemente, as correntes, são distribuídas entre as três fases.

Observar que a distorção é bastante reduzida, ficando abaixo de 15%, mesmo considerando distorções de até 76% (Fase A). As imprecisões nas escalas dos sensores, bem como a baixa resolução digital são dois pontos a serem considerados.

Na figura pode-se comprovar que a carga está conectada entre as fases B e C, configurando uma condição de desequilíbrio bastante elevado. A pequena corrente na fase A é devida ao consumo do filtro RC conectado na saída do filtro ativo.

Outra fonte de discussão é a robustez do sistema frente a oscilações, ou seja, os transitórios. Para demonstrar a sua robustez mostra-se abaixo a Figura 16, onde podemos observa a entrada em operação da carga máxima, partindo da condição de que o filtro ativo paralelo esteja em operação, mas sem qualquer carga em operação.

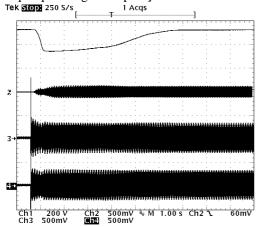


Figura 16: Transitório de entrada de carga (100% da carga) – tensão no link CC (superior) e correntes no filtro e na carga.

Do outro lado, tem-se a retirada de 100% da carga que também provoca um transitório significativo e onde o controle mostra mais uma vez sua capacidade de suportar esse tipo de situação, retornando ao estado de estabilidade. Essa situação é mostrada na Figura 17, abaixo.

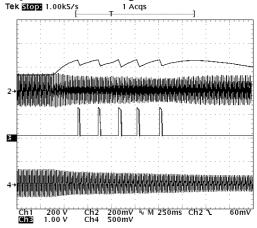


Figura 17: De cima para baixo - tensão no link CC (superior), corrente no filtro ativo, tensão no resistor de proteção do link CC e corrente na carga.

Na Figura 17, ressalta-se que a elevação da tensão do link CC se deve ao fato de o controlador PI da tensão ser lento, o que impede que o mesmo possa entender que houve uma retirada muito grande de carga e que a energia antes entregue ao conversor para manter a tensão CC constante, pode agora ser reduzida. Desta forma, entra em ação um circuito de proteção eletrônico, que conecta um resistor de baixo valor ao link CC, impedindo sua elevação a valores que prejudicariam permanentemente os componentes do conversor (semicondutores, capacitores, etc.).

VIII. CONCLUSÕES

Este trabalho apresentou o projeto, simulação e implementação prática de um filtro ativo para compensação de harmônicas, com balanceamento das fases e compensação de reativos. Um ponto importante observado durante os testes em laboratório é que o resultado da compensação é diretamente proporcional às condições de operação da carga, uma vez que o filtro é projetado para uma determinada condição nominal. Assim o estudo do tipo de carga a ser compensada é fundamental para o correto dimensionamento deste filtro.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Second International Workshop on "Power Definitions and Measurements under Nonsinusoidal Conditions". Stresa-Italy, Sept. 1993.
- [2] W. V. Lyon, "Reactive power and unbalanced circuits", Electrical World, Vol. 75 (25), pp. 1417-1420, 1920.
- [3] Budeanu C.I. "The Different Options and Conceptions Regarding Active Power in Non-sinusoidal Systems". Rum. Nat. Inst., Publ no.4, 1927.

- [4] Fryse S. "Wirk-, Blind-, Scheinleistung in Elektrische Stromkreisen in nicht sinusformigen Verlauf von Strom und Spannung". ETZ, Bd. 53, 1932.
- [5] F. P. Marafão, S.M. Deckmann, A. J. Pomilio, and R. Q. Machado. Selective disturbance compensation and comparisons of active filtering strategies. IEEE International Conference on Harmonics and Quality of Power (ICHQP), 2002. ISBN 0-7803-7672-2.
- [6] IEEE Working Group on Nonsinusoidal Situations, "IEEE Tutorial Course on Nonsinusoidal Situations: Effects on Performance of Meters", 90EH0327-7-PWR, 1990.
- [7] M. Depenbrock, "Quantities of a multi-terminal circuit determined on the basis of Kirchhof's laws", Fourth International Workshop on Power Definitions and Measurements under Non-sinusoidal Conditions, pp. 29-36, Milan-Italy, 1997.
- [8] Gannett, R. A. Sozio, J. C. Boroyevich, D. Bradley Application of synchronous and stationary frame controllers for unbalanced and nonlinear load compensation in 4-leg inverters. Applied Power Electronics Conference and Exposition, 2002. APEC 2002. Seventeenth Annual IEEE. Vol. 2, pp. 1038-1043. 2002. Location: Dallas, TX, USA
- [9] Srinivas Ponnaluri, Axel Brickwedde, "Generalized System Design of Active Filters" Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual. Vol. 3, pp. 1414-1419. Vancouver, BC, Canada.
- [10] Luis A. Morán, Juan W. Dixon, Rogel R. Wallace, "A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Current Harmonic Compensation", IEEE Transactions on Industrial Electronics, Vol. 42, No. 4, 1995.
- [11] Richard Zhang, "High Performance Power Converter Systems for Nonlinear and Unbalanced Load/Source", Tese de Doutorado, Virginia Polytechnic Institute, 1998.
- [12] Thierry Thomas, Kévork Haddad, Geza Joós, Alain Jaafari, "Design and Performance of Active Power Filters", IEEE Industry Applications Magazine, 1998.
- [13] E. Clarke. Circuits Analysis of A-C Power Systems, volume I Symmetrical and Related Components. John Wiley and Sons, Inc., New York USA, 1943.
- [14] Norman S. Nise. "Control systems engineering". Benjamin-Cummings Publishing Co. Redwood City, CA, USA. ISBN:0-8053-5420-4. 1991. 756 pp.