# XIV SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA

## PADRÃO ANTIFURTO COPEL

## HILDAMARA BRONDANI COELHO EDSON BENEDITO CÉSAR

COPEL- COMPANHIA PARANAENSE DE ENERGIA

Palavras-chave: furto, padrão, cabo antifurto, segurança

Foz do Iguaçu, 19 a 23 de novembro de 2000

#### 1. Introdução:

Seguindo a tendência de algumas concessionárias do Brasil e da América do Sul, a Copel adotou em localidades com altos níveis de furto de energia um padrão de atendimento a consumidores denominado "antifurto", que já apresentou excelentes resultados onde foi aplicado.

Este tipo de atendimento tem por objetivo dificultar a realização de ligações clandestinas e garantir as condições necessárias para um adequado fornecimento de energia, propiciando aos consumidores o acesso a energia firme, segura e legal.

Adicionalmente, com a regularização das ligações existentes, serão eliminadas instalações clandestinas perigosas, o que, além de evitar o consumo irracional e desmedido de energia de má qualidade, característico das regiões sem medição, propiciará aumento da segurança da rede elétrica.

O padrão adotado pela Copel foi baseado na experiência de algumas concessionárias do setor conjugada com necessidades específicas da empresa, orientando-se primordialmente no estabelecido no documento técnico CODI-21.18 "Padrão de Rede Antifurto".

O sistema destina-se ao atendimento a consumidores monofásicos, de baixo poder aquisitivo, através de ramais de cabo antifurto derivados de rede secundária isolada trifásica, em localidades com alta incidência de furto de energia.

#### 2. Padrões usuais Antifurto:

Para definição do padrão Copel, foram visitadas outras concessionárias no Brasil e no exterior (Cerj, Coelba, EDESUR, EDENOR, CGE e Chilectra).

O modelo estabelecido pela Copel, pouco difere do padrão da maioria das concessionárias. A diferença mais significativa é que algumas delas adotam alternativas em que a rede secundária é constituída por cabos antifurto.

O Padrão Antifurto utilizado pelas concessionárias visitadas demonstra que, embora não seja possível erradicar totalmente o furto de energia, pode-se inibi-lo e dificultá-lo. É de fundamental importância a constante inovação a fim de que as soluções implementadas se antecipem às intenções de furto.

Com as informações obtidas nas visitas realizadas pela Copel, pode-se classificar o atendimento em padrão antifurto em três grupos, com as seguintes características:

## 2.1. Normalização

- destinado a atendimento de consumidor isolado em Padrão antifurto (ramal de cabo antifurto) em locais com rede secundária nua;
- indicado para casos de reincidência de fraude por um consumidor em locais sem necessidade de conversão de toda a rede nua de baixa tensão para secundária isolada;
- principal vantagem: baixo custo;
- principal desvantagem: vulnerabilidade da rede secundária.

## 2.2. Sistema DAC- Distribuição Aérea Convencional

- consumidores atendidos com Padrão antifurto em locais com rede secundária isolada (cabo multiplex isolado, com neutro nu ou isolado);
- as conexões com os ramais de ligação dos consumidores são feitas através de caixas de derivações ou através de conectores próprios para uso em cabos isolados (conector perfurante);
- principal vantagem: é de fácil de operação, porém dificulta os chamados "gatos" na rede secundária;

• principal desvantagem: pontos vulneráveis a fraude (caixa de derivações e ligação de iluminação pública);

#### 2.3. Sistema DAE- Distribuição Aérea Especial

- indicado para locais com grande incidência de furto;
- os consumidores são atendidos com cabo antifurto monofásico ou bifásicos a partir do transformador;
- a inexistência de rede secundária isolada torna necessário o uso de caixas de derivações em praticamente cada poste, pois o secundário do transformador é ligado diretamente a elas (de onde saem os ramais dos consumidores) localizada no máximo nos dois postes adjacentes;
- principal vantagem: maior dificuldade de acesso aos pontos vulneráveis;
- principal desvantagem: custo elevado devido ao grande número de transformadores (em sua maioria subcarregados), que dificultam também a operação.

## 3. Projeto Piloto Copel:

#### 3.1. Características:

A Copel realizou, em 1999, projeto piloto para o atendimento de aproximadamente 180 consumidores em uma área de alto índice de furto (Vila Morenitas), na cidade de Foz do Iguaçu/PR. O sistema utilizado foi o DAC (distribuição aérea convencional).

#### 3.2. Custo estimado:

O projeto foi executado em parceria com fabricantes para o fornecimento de material e treinamento. Foram utilizados materiais doados pelos seguintes fabricantes:

- AMP:
  - 10 caixas de ligações, 54 conectores perfurantes e 18 conectores cunha para ligação das caixas e execução de cruzamentos aéreos
- Cearca S.A. Conductores Electricos de Cobre Y Alumínio: 2.200 m de cabo antifurto Cu 4 mm2
- Andújar S.A. Conductores Elétricos:
  90 "kits" de material contendo cabos antifurto (fabricação Andújar), conectores
  AMP (perfurante para a fase e conector cunha para o neutro), alças e fitas de amarração totalizando aproximadamente 1.300 m de cabo antifurto Cu 6 mm2, 90 conectores perfurantes e 90 conectores cunha.
- PLP: Braços com grampo de suspensão para redes secundárias isoladas.

O custo dos materiais acima foi *estimado* com base nos preços fornecidos pelos fabricantes, de acordo com a tabela a seguir:

Tabela 1- Custo estimado dos materiais doados

| Material                 | Quantidade | Preço Unitário (R\$) | Preço Total (R\$) |
|--------------------------|------------|----------------------|-------------------|
| Condutore Cearca         | 2.200 m    | 1,00                 | 2.200,00          |
| Kits Andújar             | 90 kits    | 16,00                | 1.440,00          |
| Conector perfurante AMP  | 54         | 5,20                 | 280,80            |
| Conector cunha AMP       | 18         | 7,00                 | 126,00            |
| Caixa de ligações AMP    | 10 caixas  | 115,00               | 1.150,00          |
| Grampos de suspensão PLP | 50 peças   | 26,00                | 1.300,00          |
| Total                    |            |                      | 6.496,80          |

#### 3.3. Considerações:

Na ocasião, foram testados alguns ramais protegidos por fusíveis (tipo Diazed) junto à conexão na rede. Pensou-se que isto facilitaria o corte de consumidores, já que bastaria se retirar o fusível para poder desconectá-los. Essa alternativa foi descartada, pois os esforços mecânicos a que estão submetidos os ramais acabam por afrouxar a mola, prejudicando o contato elétrico. Além disso, os fusíveis utilizados não são padronizados no Brasil.

#### 4. Padrões Copel de Materiais e Montagens:

Com base nesta experiência, foram definidos os padrões Copel de materiais e montagens para atendimento a consumidores no padrão antifurto. Estes padrões, bem como os demais padrões de materiais e montagens de Redes da Copel, estão disponíveis no seguinte endereço:

## http://www.copel.com/distribuicao/engenharia/normas/

#### 4.1. Características da Rede Secundária:

A rede secundária é isolada, de acordo com o padrão Copel estabelecido pela NTC (Norma Técnica Copel) de Montagem de Redes de Distribuição Secundária Isolada – RSI (disponível na home-page acima citada), com condutor com as seguintes características:

 Cabo de alumínio isolado multiplexado auto-sustentado, neutro nu em alumínio com alma de aço, e fases em alumínio isolado com XLPE (0,6/1,0 kV, nas bitolas: 70 mm² (NTC 810874) e 120 mm² (NTC 810875).

#### 4.2. Tipos de Atendimento Antifurto:

São utilizados dois tipos de atendimento a consumidores, que devem ser selecionados de acordo com as características locais:

#### • Com conectores:

Em locais de pouco adensamento de consumidores por poste (menos de dez consumidores). As conexões dos consumidores à rede secundária isolada são feitas através de conectores cunha (neutro) e perfurante (fases), com ancoragem do ramal no poste ou no meio do vão. As conexões do meio do vão são mais econômicas devido ao menor comprimento dos ramais.

### • Com caixa de ligação:

Em locais com maior concentração de consumidores (mais de dez) por poste torna-se mais econômica a utilização de caixas de ligações com barramentos. O ramal de ligação é conectado nos bornes da caixa de derivação até a caixa de medição do consumidor.

#### 4.3. Materiais

A seguir relacionamos os materiais padronizados pela Copel (maiores informações podem ser obtidas nas respectivas Normas Técnicas Copel - NTCs disponíveis na Internet.):

- Cabo anti-furto (concêntrico)- NTC 810790: cabo composto por um condutor fase isolado e um condutor neutro disposto de forma helicoidal sobre esta isolação, recoberto por outra camada isolante protetora.
- Caixa de derivações- NTC 813200: caixas lacráveis com chave de difícil violação, possuindo 4 barramentos (3 fases + neutro), destinada a uma ligação rápida e fácil dos ramais de serviço e pontos de iluminação pública na rede secundária, alimentada por cabo isolado de cobre de seção 35 mm². A conexão

pode ser feita através de dispositivo de pressão (mola) ou parafuso, que dispensa o uso de conectores, eliminando-se gastos com material em caso de cortes e religações sucessivas de um consumidor. Para assegurar uma melhor vedação da caixa, seus orifícios possuem anéis de borracha, que são perfurados com o próprio cabo antifurto na hora de se executar uma conexão.

- Conector perfurante- NTC 812950/54: conector em liga de alumínio, coberto com material polimérico resistente a intempéries e aos raios ultravioleta, cuja cabeça é limitadora de torque (a porca se rompe ao atingir o torque especificado), utilizado para ligações dos condutores fases.
- Conector cunha- NTC 813097/3151: utilizado na ligação de mensageiros, neutro dos ramais, aterramentos e estaiamentos.
- Cunha de madeira ou plástico- NTC 890181: ferramenta de trabalho para abertura do encordoamento do cabo multiplexado durante a execução das conexões, evitando danos à isolação do cabo.
- Cinta plástica auto-travante- NTC 813450: cinta de material polimérico resistente a intempéries, flexível, para amarração dos cabos e ramais.
- Grampo de suspensão- NTC 814001/02: braço metálico com grampo em polietileno de alta densidade ou polipropileno, com a função de dar sustentação mecânica à rede secundária isolada.
- Padrão de entrada: o cabo do ramal é ligado diretamente no medidor de energia do consumidor. As descidas devem ser aparentes, sem eletrodutos embutidos ou aparentes nos postes dos consumidores, pois a filosofia deste padrão busca tornar as ligações o mais aparente possíveis. Os cabos do ramal de ligação ficam, pois, expostos, presos por fita plástica autotravante. Seguindo esta linha, as caixas de medição também devem ser totalmente transparentes.
- Os demais materiais utilizados são os já padronizados na Norma Técnica Copel -NTC de Materiais de Distribuição - Padrão.

#### 5. Outras considerações

- **5.1.** O atendimento a consumidores em padrão antifurto busca eliminar os pontos vulneráveis da rede, passíveis de intervenção por parte de terceiros.
- **5.2.** Todas as conexões com a rede secundária multiplexada devem ser executadas com conectores perfurantes ou através das caixas de derivação.
- **5.3.** Os barramentos da caixa de derivação devem ser energizados sempre na seqüência : Neutro, A, B, e C ( de baixo para cima).
- **5.4.** Nas áreas atendidas por esse padrão, faz-se necessário trabalho junto à população para esclarecimentos, pois tentativas de intervenção na rede podem ocasionar interrupção no fornecimento de energia para a região e causar acidentes fatais.
- 5.5. Os cabos antifurto propiciam uma instalação rápida, simples, limpa e segura, e sua utilização deve estar sempre aliada a redes secundárias isoladas, o que não impede o seu uso em redes nuas, porém com a perda da sua principal propriedade: a de se dificultar as fraudes.
- 5.6. O critério de atendimento antifurto deve ser o da visibilidade, seja na transparência das caixas de medição, seja nas ligações aparentes Tudo deve ser executado com a finalidade de se detectar rápida e visualmente qualquer tentativa de intervenção clandestina.

- **5.7.** Especial tratamento deve ser dado à iluminação pública. Para que os seus pontos de conexão não se configurem como possíveis pontos vulneráveis a ligações clandestinas devem ser utilizados cabos isolados e conectores perfurantes.
- **5.8.** Outro ponto vulnerável são as caixas de ligação, pois o sucesso do projeto está estritamente relacionado a sua inviolabilidade.
- **5.9.** A bitola de cabo antifurto escolhida foi a de 6 mm² por ser compatível com o padrão de disjuntores utilizados para ligação de consumidores (50 A).
- **5.10.** A opção pelo padrão de ligação de consumidores através de caixa de derivações torna-se mais econômica a partir de dez consumidores por poste.

## 6. Resultados parciais:

A Vila Morenitas, onde está instalada a Rede antifurto, tem sido monitorada e consideramos que o piloto obteve êxito total. Não há relatos de furtos, porém, das doze contas que se encontravam desligadas por falta de pagamento (dados de maio/2000), quatro estavam autoreligadas (sem prejuízo da medição). Como estes ramais eram protegidos por fusíveis, pode-se desconectar os consumidores da rede facilmente.

Os gráficos a seguir ilustram o comparativo entre a situação da Vila Morenitas (designada área 2) e uma área de características semelhantes, porém com rede convencional (área 1).

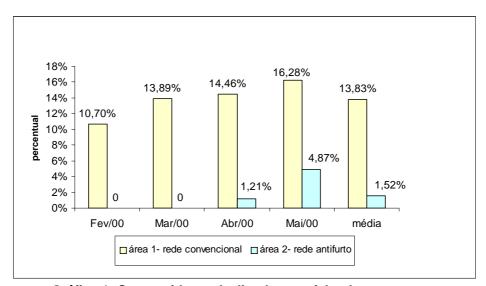



Gráfico 1- Consumidores desligados por falta de pagamento

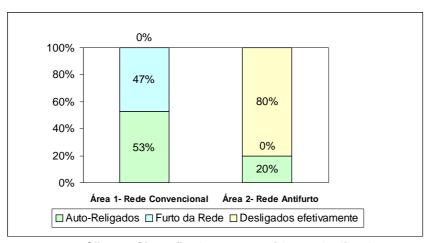



Gráfico 2- Situação dos consumidores desligados

Pode-se verificar pelo gráfico número 1 que a taxa de cortes por inadimplência é maior na área com rede convencional. Esta taxa pode ser atribuída à facilidade em se conectar clandestinamente à rede secundária nua, o que pode ser comprovado pelo gráfico 2, onde 47% destes consumidores estão furtando da rede.

Na área com rede antifurto não foram detectadas ligações clandestinas à rede, apenas casos de auto-religação, com violação da caixa de medição, porém sem prejuízo da mesma, já que o cabo antifurto é ligado diretamente aos bornes do medidor.

#### 7. Conclusões:

A parceria com fabricantes argentinos e brasileiros foi fundamental pois possibilitou a instalação de diferentes tipos de materiais, em diversas configurações de atendimento a consumidores.

Com esta tecnologia, a Copel busca a constante melhoria dos seus índices de qualidade e desempenho, diminuindo os desligamentos por interferência de terceiros na rede elétrica, tendo por objetivo a melhor relação custo/benefício e a isonomia no tratamento aos consumidores, lembrando que, muitas vezes, em um projeto deste cunho, o melhor retorno é de natureza não financeira e sim estratégica (evitar que o problema se alastre) e visa dar

Com a regularização das ligações existentes, serão eliminadas instalações clandestinas perigosas, evitando-se o consumo irracional e desmedido de energia de má qualidade, característico das regiões sem medição. Esta ação prolongará a vida útil dos transformadores ali instalados, pois os mesmos não mais estarão sujeitos a cargas desconhecidas.

Cumpre-nos esclarecer que por se tratar de rede secundária isolada (multlipex na BT) conjugada com ramais antifurto (cabo antifurto), esta solução não é totalmente imune a intervenções clandestinas, porém a dificulta muito.

Há necessidade de constante atuação para se fazer adaptações e melhorias nos pontos frágeis iá descobertos pelos fraudadores.

#### 8. Referências Bibliográficas:

- DOC.TÉCNICO: CODI-21.18. Padrão de Rede Antifurto
- CERJ- Companhia de Eletricidade do Rio de Janeiro. ITD 04/DED/98- Critérios básicos para elaboração de projetos de redes de distribuição aérea especial com cabos concêntricos - DAE.

#### 9. Autores:

#### Hildamara Brondani Coelho

COPEL DISTRIBRUIÇÃO/DISED/SEDNOR- Normalização da Engenharia de Distribuição Rua José Izidoro Biazetto, 158- Bloco C

Bairro: Mossunguê Curitiba- Paraná

CEP 81.200-240 Telefone (41) 331-2759 Fax (41) 331-3266

e-mail: brondani@mail.copel.br

#### Edson Benedito César

COPEL DISTRIBRUIÇÃO/DISDO/UDFOZ Rua Alastair Munro, 220 Foz do Iguacu- Paraná CEP 85.863-050 Telefone (45) 521-2700/2711

e-mail: cesarb@mail.copel.br