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Abstract--This work presents a comparison of three well- 

known algorithms for phasor estimation in power systems. These 
algorithms are the recursive Discrete Fourier Transform, notch 
phase locked loop, and Kalman filter. Voltage signals, corrupted 
by the presence of distortions and variations, are used to verify 
the algorithms’ performances. Comparison results are 
highlighted in the term of mean squarer error measure. The 
numerical results obtained with computational simulations verify 
that the Discrete Fourier method is not an appropriate technique 
for those cases represented by voltage signals containing inter-
harmonics or frequency variations. The notch phase locked loop 
presents a satisfactory performance if it is applied to amplitude 
estimations, taking less than three cycles for convergence. An 
unexpected result shows that that the Kalman filter fails when 
the voltage signals contain high values of voltage variations, 
flicker, or frequency deviations. 
 

Index Terms--Phasor Measurements, Signal Processing, 
Harmonic Distortions. 

I.  INTRODUCTION 

any intelligent electronic devices (IED), such as digital 
relays, data recorders, remote terminal units (RTU), 
phasor measurement units (PMU), etc., have digital 

algorithms that estimate the electrical parameters of 
amplitude, phase, frequency, etc., when installed in power 
system under low distortion and time-varying condition. 
These devices can, however, misoperate or produce imprecise 
results when the fundamental signal component is 
contaminated by harmonic, inter-harmonic, flicker, notches 
and other waveform disturbances in the electric signals from 
the transmission and distribution power systems. 

The Discrete Fourier Transform (DFT) is the most 
common technique used for phasor estimation. It is employed 
in network protection and monitoring often in the form of the 
more efficient Fast Fourier Transform (FFT) or based on its 
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recursive formulation. This recursive version constitutes the 
core of a large number of IEDs. Although being simple, the 
DFT algorithm requires attention in order to avoid 
inconsistent results due to voltage and current perturbations as 
well as signal acquisition inaccuracies. Asynchronous data 
sampling and the presence of inter-harmonics generally affect 
the accuracy of the IED. The asynchronous sampling occurs 
when the ratio between the sampling frequency and the 
fundamental component frequency is a fractionary number.  

Recent works address estimation techniques that are 
accurate under high distortion and time-varying conditions as 
found in the power grid. Papers [1]-[5] present estimation 
techniques using Kalman filters with linear and nonlinear 
models and for real or complex forms. Papers [6]-[10] 
introduce estimation methods based on the PLL (Phase-
Looked-Loop) structure.  

The PLL method can estimate the frequency, amplitude and 
phase of the harmonic and inter-harmonic components. 
However, the convergence time of the PLL-based method is 
very sensitive to its parameters’ initialization. 

Efforts in understanding the accuracy of estimating the 
electrical parameters rely on analysis and test signals [11]-
[13]. Nevertheless, a more comprehensive and comparative 
evaluation of these techniques under time-varying scenario is 
lacking. 

Complementing the contributions of the previous efforts, 
this work presents a comparative performance evaluation of 
three well-known phasor estimation methods: the recursive 
DFT, Kalman Filter and PLL techniques. The scenario for 
analysis is comprised of severe distortions and time-varying 
conditions commonly found in power systems, such as high-
power background noise, harmonics and interharmonics, 
frequency and amplitude variations, flicker, etc. The 
numerical results indicate some timely and important issues 
about the behavior of these methods under the simulation 
scenario that characterize the behavior of the power system.  

This contribution is presented as follows. In section II, the 
phasor estimation methods are briefly described. In Section 
III, some simulation and comparison results are presented. In 
section IV the computational effort of the three method is 
presented. Finally, some conclusions are commented in 
Section V. 
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II.  PHASOR ESTIMATION 

This section will present the theoretical aspects of the three 
techniques of phasor estimation that will be compared in this 
work: Recursive DFT, Kalman Filter and PLL. The sampled 
voltage signal whose parameters should be estimated 
(amplitude and phase) can be described by 

( ) ][][)][2cos][)( 000 nnTnnfnAnx s ηδπ ++⋅⋅⋅⋅=   (2.1) 

where ][0 nA , ][0 nf  and ][0 nδ  are the amplitude, frequency, 

and the phase of the fundamental component, respectively. 
Note that these parameters are assumed to be time-variant to 
address the realistic disturbances in voltage signals, such as 
flicker, sag, swell, frequency deviations, etc. sT  is the 

sampling time and ][nη  denotes the distortions that can be 

added to the fundamental component, such as noise, 
harmonics, interharmonic, etc. 

A brief description of the method applied to estimate the 
amplitude and phase parameters is presented as follows. 

A.  Recursive DFT 

Equation (2.1) can be rewritten in the form of (2.2): 

( ) ( ) ][sin][cos][][ 00 nnnYnnYnx SC ηωω +⋅+⋅=   (2.2) 

where sTf ⋅⋅= 00 2πω  is the digital frequency in radians. 

The amplitude and phase of the phasor can be obtained using 
the following relationships: 

 ][][][ 22
0 nYnYnA SC +=        (2.3) 

( )][/][tan][ 1
0 nYnYn CS

−=δ       (2.4) 

where ][nYC  and ][nYS  are respectively the real and 

imaginary components of the N-points DFT taken from input 
vector x=[ x[n-N+1]  x[n-N+2] … x[n] ]t when the 
fundamental frequency is 00 ][ ωω =n . These two parameters 

can be obtained using the recursive DFT equation [14], 

( ) )cos(][][]1[][ 0ωnNnxnxnYnY CC −−+−=   (2.5) 

( ) )sin(][][]1[][ 0ωnNnxnxnYnY SS −−+−=   (2.6) 

B.  Kalman Filter 

Kalman filtering has been extensively applied to many 
different areas of engineering, such as target tracking, 
adaptive control and radar. In this contribution, we are mainly 
concerned with its use for frequency and phasor estimation of 
electric power signals. 

Several modeling forms of the Kalman filter can be used for 
phasor estimation [1]-[5]. In this work, we selected to 
implement and evaluate the extended complex Kalman filter 
model (ECKF) proposed in [1]. The ECKF is characterized by 
a nonlinear state equation with the states being estimated as 
complex quantities. The ECKF is described by the following 
state equations: 

1 0 0

( 1) 0 0 ( )

*( 1) 0 0 1/ *( )

u n u n

u n u n

α α
α

α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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   (2.7) 
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where 

).exp( 0ωα j=         (2.9)  

)exp(]1[ 000 δω +⋅=+ njAnu     (2.10) 

)exp(]1[* 000 δω −−⋅=+ njAnu     (2.11) 

The implemented filter algorithm used to obtain the states 
is described in further detail in [1]. The algorithm provides 
estimations of the frequency, amplitude and phase by 
manipulating (2.9)-(2.11). 

The general problem with all Kalman filter 
implementations is detecting the point where to reset the 
covariance matrix. After the initial convergence, the gain and 
the covariance matrix settle to very small values. 
Subsequently when any of the parameters (i.e., amplitude, 
phase, and frequency) of the signal change, the covariance 
matrix must be reset to track the new values. Proposed in [2], 
one implementation resets the matrix to the initial value based 
on the magnitude of the error estimate. A hysteresis type 
decision approach is employed to avoid frequent resetting. 
The hysteresis band is determined by the amount of noise and 
the characteristics of the convergence band. For the sake of 
simplicity in this work, the Kalman gain and the covariance 
matrix is reset at the moment that one of the voltage 
parameters (amplitude, phase or frequency) changes. 

C.  Notch PLL (N-PLL) 

PLL techniques have been applied to several power system 
applications, such as peak voltage detection, harmonic 
detection, and phase angle tracking. The works presented in 
[6]-[10] uses the PLL structures for phasor and frequency 
estimation.  

The PLL structure used in this paper is a variant form of 
the EPLL (Enhanced PLL) proposed in [8]. This new structure 
was initially introduced in [9] and [10]. Fig. 1 shows the block 
diagram of the proposed structure. The main part of the 
structure is the band pass filter )(zHbp and the EPLL. The 

band pass filter is built using a 4th order notch filter whose 
notch frequency is adapted according to the EPLL frequency 
estimation. This arrangement has as advantages because it 
provides a signal enhancement increasing the SNR (signal to 
noise rate) at the EPLL input. The disadvantages are related 
with a little increase on computational effort and convergence 
time. 
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Fig. 1. The block diagram of the NPLL 

 
The set of equations that governs the EPLL in discrete time 

domain are: 
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where μ1, μ2, μ3 are constant gains that determine the speed of 
convergence of PLL and TS is the sampling period. The error 
signal ][ne  is the difference between the band pass output 

signal and the internal EPLL generated signal. 
The dynamics of the estimated variables A0[n], ω0[n] and 

φ[n] are coupled, and they mutually affect each other. The 
convergence rate increases with the increasing in the value of 
parameters μ1, μ2 and μ3; however, this also increases the 
steady-state error. Some guidance for adjusting these 
parameters is presented in [8]. 

III.   SIMULATIONS 

In this section we present the comparison between the three 
methods for phasor estimation performance when the input 
signal is under higher distortions and time variation 
conditions. The cases considered in this paper are listed in 
Table I. 

 
TABLE I 

TEST SIGNALS 
case signal type Disturbance 

1 Fundamental  Step changing in amplitude 
2 Fundamental + harmonic Step changing in amplitude  
3 Fundamental + harmonic Step change in frequency 
4 Fundamental + flicker  
5 Fundamental + inter-harmonic  
6 Fundamental Sinusoidal changing in 

frequency 

 
All signals in Table I are additionally corrupted by zero-

mean, white Gaussian noise given by N(0, 2σ ), where σ is 
the standard deviation of the distribution. The sampling rate 
used in all simulation 0fNpcf s ⋅= , with Npc=64 samples per 

cycle. Two parameters are used to identify the performance of 
the method: the convergence rate and the Steady Estate Mean 
Squared Error (MSE). The convergence rate defines, in terms 
of cycles of the fundamental component, when the parameter 
estimated reached its steady state. Here the stead estate is 
defined as the moment that the parameter reaches and stays 
inside of the interval of 2% of the steady-state value. The 
MSE any of the parameters is calculated by the following 
expression: 

( ) ( )∑
−

=
−=

1

0

2
0][

1 N

n

pnp
N

pMSE     (2.13) 

where N is the first sample after convergence, p is the 
parameter being estimated, and p0 is its actual value. 
 

A.  Fundamental corrupted by noise (Case 1) 

In this case the input signal is given by 

][)cos(][ 0 nnAnx ηδω ++⋅=       (2.14)  

where ][nη = N(0, 2σ ). In this first example the amplitude 

A0 changes from 1 pu to 0.8 pu, at 0.4336s. Fig. 2 shows the 
performance of the three methods when the SNR is 21 dB 
( )05.0=σ . The DFT algorithm takes one cycle to reache the 

final value of the amplitude, the ECKF takes about 1 cycle 
and the NPLL takes about 2 cycles. The phase response for 
the DFT algorithm does not change in this case, while the 
ECKF shows oscillation response and the NPLL takes a long 
time-interval until it enters steady-state condition. However, 
one has to note that the NPLL method achieves the lowest 
steady-state error. 

Table II shows the steady-state mean square error 
computed by (2.13) for three different SNR: 15, 21 and 35 dB. 
Note that in this situation Fourier algorithm has o good 
tradeoff between simplicity, accuracy and speed, this is 
because the Fourier algorithm minimizing the error in the least 
square sense. 

 

 
Fig. 2. Amplitude estimation (top) and phase estimation (bottom) - 
SNR=21dB. 

  
TABLE II 

STEAD ESTATE MEAN SQUARE ERROR (MSE) - CASE 1 
DFT NPLL CEKF SNR 

(dB) Ampl 
(x 10-4) 

Phase 
(x 10-3) 

Ampl 
(x 10-4) 

Phase 
(x 10-3) 

Ampl 
(x 10-4) 

Phase 
(x 10-3) 

15 0.3052  0.0324 0.0889 0.1149 0.0156 0.5231 
21 0.0603 0.0099 0.0271 0.0136 0.0117 0.0159 
35 0.0022 0.0029 0.0005 0.0015 0.0009 0.0105 
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B.  Fundamental Signal with harmonics and noise (case 2) 

The signal used in this simulation is given by (2.14) 

][)5cos()20/(

)3cos()10/()cos(][

500

300000

nnA

nAnAnx

ηδω
δωδω

++
++++=

 (2.15) 

The amplitude A0 changes from 1.2 pu to 0.8 pu at 0.4336 
sec. The phases 530  and  , δδδ  are respectively 0.9, 0 and 0 

rad. Fig. 3 shows the performance of the three methods when 
the noise is N(0,0.0025). The performance of the Fourier 
algorithm does not change by the presence of the harmonics 
because it is able to filter them. While the ECKF performance 
gets worse (the convergence time increase to about 3 cycles) 
the NPLL performance is practically unaffected. Table III 
shows the MSE. 

 

 
Fig. 3. Amplitude estimation (top) and phase estimation (bottom) - Case 2 for 
σ =0.05 

 
TABLE III 

STEAD ESTATE MEAN SQUARE ERROR (MSE) - CASE 2 
DFT NPLL CEKF SNR 

(dB) Ampl 
(x 10-4) 

Phase 
(x 10-3) 

Ampl 
(x 10-4) 

Phase 
(x 10-3) 

Ampl 
(x 10-4) 

Phase 
(x 10-3) 

15 0.2764  0.0379 0.2097 0.0495 0.2152 0.0903 
21 0.0832 0.0118 0.0406 0.0050 0.1173 0.0446 
35 0.0026 0.0003 0.0178 0.0020 0.0893 0.0273 

 

C.  Frequency deviations (Case 3) 

Now, we analyze the performance of all methods when 
power frequency is suddenly increased from 60 Hz to 64.8 Hz. 
This high deviation, in spite of being hard to happen in a 
practical case, was chosen to better characterize the 
convergence time. The signal is the same as in (2.15). Fig. 4 
shows amplitude and phase estimations. One can see that the 
phase for the Fourier algorithm exhibit a linear error. This is 
because the reference window is assumed to be a time shifted 
by the quantity given by (Npc⋅TS). As the frequency has 
changed the phase will increase at each new cycle. This error 
can be, evidently corrected by adjusting sampling time, but the 
frequency must be estimated, what does not happen in 
conventional Fourier algorithm.  

 
Fig. 4. Amplitude estimation (top) and phase estimation (bottom) - Case 3 for 
σ =0.05 

 
The amplitude estimation performed by Fourier algorithm 

exhibits oscillatory behavior, which was already expected. 
The ECKF and NPLL are able to estimate the frequency and 
have better estimation performance in this simulation, in spite 
of their long convergence times (about of 5.4 cycles for NPLL 
and 2 for the ECKL). Fig. 5 shows the frequency estimation 
for ECKF and NPLL methods. The MSE values resulted from 
the amplitude estimations is shown in Table IV. 

 

 
Fig. 5. Frequency estimation - Case 3 for σ =0.05 

 
TABLE IV 

STEAD ESTATE MEAN SQUARE ERROR (MSE) - CASE 3 
SNR (dB) DFT (1e-3) NPLL (1e-3) CEKF (1e-3) 

15 0. 5311 0.0117 0.0103 
21 0.4978 0.0030 0.0051 
35 0.4978 0.0018 0.0812 

 

D.  Voltage Variations / Flicker (case 4) 

Large nonlinear loads, e.g., arc furnaces, results in voltage 
amplitude variations which impact sensitive electronic devices 
and disturb readers using incandescent lamps. To determine 
the flicker due to any arbitrary voltage fluctuation the 
flickermeter concept was developed and implemented in the 
IEC standard [15], where the input signal model was defined, 
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instead of the light model. In this model the input signal has 
the general equation, 

])[sin(]).[1(][ 00 nnnAAnx m δω ++=    (2.16) 

where 

).2sin(][
0

nTfanA smi

M

i
im π∑

=
=      (2.17) 

In our simulation we have used M=1, a0=0.05, fm0=1.25 
Hz, a1=0.02, fm1=5 Hz and 0][ =nδ . Fig. 6 shows the 

amplitude and frequency estimation. Note that the ECKF 
approach is the only method unable to track the amplitude. In 
this situation the Fourier is little better than NPLL. 
 

 
Fig. 6. Amplitude estimation (top) and phase estimation (bottom) - Case 4 for 
σ =0.05 

 

E.  Interharmonic (case 5) 

In this case an inter-harmonic component is added to the 
fundamental component. The equation is given by 

][)5.4cos()3/()cos(][ 00000 nnAnAnx ηωδω +⋅++=   

 (2.18) 

Fig. 7 shows the phase and amplitude estimations. Note 
that the Fourier algorithm exhibit oscillatory behavior and the 
error can reach 5 %. However a moving average filter seems 
to be a good choice for smoothing this oscillation. The MSE 
values for amplitude and phase estimations are shown in Table 
V. For simplicity, this table shows the MSE when σ =0.05.  
 

 
 

Fig. 7. Amplitude estimation (top) and phase estimation (bottom) - Case 6 for 
σ =0.05 

 
TABLE V 

STEAD ESTATE MEAN SQUARE ERROR (MSE) - CASE 5 

DFT NPLL CEKF SNR 
(dB) Ampl 

(x 10-3) 
Phase 
(x 10-3) 

Ampl 
(x 10-3) 

Phase 
(x 10-3) 

Ampl 
(x 10-3) 

Phase 
(x 10-3) 

21 0.6572 0.6552 0.0040 0.0847 0.0104 0.0038 

 

F.  Sinusoidal frequency deviation (Case 6) 

The last case to be considered in this work is when the 
fundamental frequency change in a sinusoidal form. This is a 
more realistic case of frequency deviation and it can be 
present in a system due to electromechanical oscillation [15]. 
The signal used to represent this situation is given by, 

0 0

0

( ) .sin ( ) ( )
t

x t A f d tτ τ δ η
⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠
∫      (2.20) 

where simulated here f(t)=(1+sin(4πt))f0 is the instantaneous 
frequency. It means that the frequency changes at rate of 2 Hz 
with the maximum and minimum value of the frequency given 
by

0 (1 0.05) Hzf ± . 

This case is quite difficult for Kalman method. In fact, a 
small deviation in the power frequency seems to be an issue 
for future investigation. The work presented in [6] is able to 
track this frequency only with a delay of 10ms, further it deals 
only with frequency estimation. 

Fig. 8 shows the amplitude and frequency estimation 
obtained with all methods. Note that the NPLL has the best 
one estimation for both amplitude and frequency. One can see 
that the frequency is poorly estimated by ECKF methods. The 
phase estimation is not good for all methods and it is not 
shown here. In fact we are investigating a new approach to 
correct the phase estimation under frequency variation 
scenery.  
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Fig. 8. Amplitude estimation (top) and frequency estimation (bottom) - Case 6 
for σ =0.05 
 

IV.  COMPUTACIONAL COMPLEXITY 

The computation effort for each method was derived in 
terms of number of additions, multiplications and divisions 
necessary to each sample. The comparative results are shown 
in Table VI. These results do not include the effort for search 
of elements in the table (sin and cos function), neither to 
compute (2.3) and (2.4) in DFT method. Note that the ECKF 
is the highest computational demanded algorithm and that the 
NPLL is little higher than Fourier (the amplitude, phase and 
frequency are directly estimated in the NPLL). 

 
 

TABLE VI 
COMPUTATIONAL EFFORT  

Method # adds (+) # mult. (x) # div. ( ÷ ) 

DFT 4 2 3 

NPLL 11 12 zero 

ECKF 50 66 3 

 

V.  CONCLUSIONS 

This work presented comparative results among three well-
known phasor estimation methods for power systems. The 
novelty introduction is a comparison under time-varying 
conditions of power frequency’s parameters and high 
distortions presence in voltage signals. 

It could be noted that the Fourier method shown a good 
performance in most of the simulated cases, except for the 
cases with frequency deviation and inter-harmonic presence 
are significant.  

Regarding the NPLL method, one could verify that good 
performance for amplitude estimation in all cases. The only 
drawback of the NPLL method is the longer time-interval for 
convergence. 

The ECKF was not able to tracking amplitude response in 
the cases 4 and 6 and in other cases the convergence ratio for 
the amplitude estimation was smaller than ones verified in 
other methods. Another important information about the 
simulation refers to the fact that the performance of ECKF is 
noise dependent. It means that for one realization of the 

Gaussian noise with identical parameters, i.e. N(0, 2σ ), the 
estimation error can increase considerably.  

It is important to mention that all simulations were 
performed keeping the algorithm parameters constant. This is 
because if we adjust some parameter the algorithm can be 
better for a specific signal, but this is not realistic because we 
do not know, a priori, what kind of disturbance will be present 
in the signal. Finally we have to highlight the fact that the 
three approaches fail in the case of high amplitude sinusoidal 
frequency variation, which maybe an interesting subject for 
future investigation of isolated / weak power systems. 
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