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ABSTRACT 
 
Real-world power quality (PQ) events usually are 
infrequent and composing a dataset of significant 
size is a difficult task. Using simulators to 
generate data in well-controlled conditions is a 
very useful and popular option. This work 
presents a framework based on the ATP 
(Alternative Transient Program) simulator, which 
allows for evaluating parameter extraction (e.g., 
wavelets) and data mining techniques. This paper 
concentrates on describing its use in fault 
identification. 
 
PALAVRAS-CHAVE 
 
Pattern recognition, ATP simulation, Time series 
classification, fault identification, data mining. 
 
1.0 INTRODUCTION 

Boosted by advances in fields such as digital 
signal processing and machine learning, current 
research in PQ covers a wide range of algorithms. 
Unfortunately, the area lacks freely available and 
standardized benchmarks and, consequently, 
comparisons among different algorithms are 
problematic. This situation is shared with other 
areas, such as time-series mining [1], but there is 
an aggravating element in PQ: real-world events 
usually are infrequent and composing a dataset of 
significant size is a time-consuming and costly 
task. Hence, the datasets of PQ events are often 
proprietary and reproducing previously published 
results is tricky or even impossible. This work 

presents a simulation-based framework that 
circumvents these problems and allows data 
mining of PQ events [2, 3]. 

In summary, this work presents a free software, 
called AmazonTP, which runs on top of the well-
known ATP simulator. Among other things, the 
user can specify relatively few parameters and 
the software automatically generates (a possibly 
large number of) events and saves them into files. 
The software is an important part of a framework 
that has been developed at the Federal University 
of Pará (UFPA) using ATP-generated data. 

There are many works in the literature that use 
ATP. The correspondent problems are, for 
example, automatic fault identification and relay 
testing [4-9]. Some of these follow the same 
methodology advocated in this work: given the 
lack of real-world data, “artificially” generate 
training and test files, and then evaluate 
techniques such as neural networks. However, 
there is still plenty of room for improving such 
methodology. 

When the process of “driving” ATP is not easy 
and flexible enough, the users tend to create a 
relatively small database of events, and figures or 
merit such as the error rate cannot be estimated 
with an appropriate level of statistical significance. 
For example, in [7, 8], all the simulations led to 
zero errors, which could eventually hide 
interesting observations about specificities of the 
algorithms. Therefore, tools for efficiently creating 
a rich set of events are very needed and this 
works aims to contribute along this line. 
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The AmazonTP, as part of the proposed 
framework, makes much easier to compare and 
evaluate novel techniques. Besides, the labeled 
datasets can be made freely available, which is 
an incentive to reproducing results and facilitate 
scientific collaboration. 

This work is organized as follows. Section 2 
briefly describes the proposed framework for data 
mining of time series. In Section 3, the module 
responsible for easing the generation of events is 
discussed. Section 4 presents an example of 
using the framework and is followed by the 
conclusions. 

 
2.0 PROPOSED FRAMEWORK 

The whole framework tries to make easier the 
comparison of algorithms, such as neural network 
and Bayesian classifiers. The next subsection 
discusses the framework in a more general 
scenario, and after that it is particularized to the 
identification problem. 

2.1 Mining time series 

The framework allows for evaluating parameter 
extraction techniques, such as wavelets, and data 
mining algorithms, such as identification (also 
called classification) and clustering, as indicated 
in Figure 1. The PQ events are generated and 
organized by AmazonTP, which repeatedly 
invokes ATP to generate each event. The process 
depends on an ATP master file, which can be 
generated, for example, with ATPDraw. In this 
work, it was adopted ATPDraw version 4.1 and 
the Windows version of ATP tpbig.exe (Watcom, 
source code of December 2003).i AmazonTP 
modifies the master file to create a new ATP file, 
which is then used as input to the ATP simulator 
in order to obtain the correspondent new event. 

The raw data (waveforms) of each PQ event is 
typically converted into new parameters. This can 
be done with Mathwork’s Matlab (see, e.g., [10]). 
Alternatively, the user can bypass Matlab and 
invoke parameter extraction algorithms supported 
by the AmazonMiner, which has been developed 
at UFPA for mining time series and relies on 
Wekaii [12]. 

Both softwares AmazonTP and AmazonMiner 
were written in Java, according to the object-
oriented paradigm. Through a DLL, AmazonMiner 
                                                           
i Both ATPDraw and ATP are available, for registered 
users (i.e., a password is required), from 
www.eeug.org. 
ii Freely available at 
http://www.cs.waikato.ac.nz/ml/weka/. 

can pass parameters to Matlab, invoke Matlab 
routines and retrieve their results. Hence, besides 
feature extraction, Matlab can perform pattern 
recognition (similarly to [7]) and plot results. In 
such cases, AmazonMiner can be used to simply 
automate the process. Alternatively, all data 
mining operations can be performed through 
AmazonMiner (useful for users that do not have 
Matlab). 

 

 

 
 

Figure 1- Flow of information in the proposed framework and 
the correspondent software. 

Figure 2 (adapted from [4]) summarizes the 
process and indicates the files that are generated 
by each stage. The final result of AmazonTP is a 
set of amf files. Each amf file stores all sequences 
generated by one ATP simulation. The waveform 
samples are stored as real numbers, represented 
as the primitive type float in Java (more 
specifically: big-endian, 32-bits, IEEE-754 
numbers). A header in text (ASCII) format 
precedes these samples. Among other things, the 
header indicates the sampling frequency, name of 
each sequence (based on its ATP name), number 
of events in each file, their location in time and 
label (description). 

When comparing techniques or promoting one, in 
order to make the conclusions as general as 
possible, it is useful to test them with PQ events 
generated with different circuits (different ATP 
master files). In this case, the user may help by 
choosing the same names for the sequences of 
interest. If that is not possible, AmazonTP has a 
post-processing module that allows to rename the 
sequences stored in amf files. This module is also 
useful when the user wants to rename sequences 
representing real-world events obtained, e.g., 
from digital fault recorders (DFR). 
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Figure 2- The files generated along the process. 

The next subsection specifically discusses 
identification, which is one of the data mining 
tasks that the framework supports and helps to 
better illustrate its use. 

2.2 Identification of Events 

The proposed framework is capable of dealing 
with sequence data (also called time series) of 
variable length [1]. In contrast, most data mining 
packages, such as Weka, restrict the events to be 
represented by a fixed-length vector. In order to 
discuss such issue, some useful definitions are 
presented. 

A sequence x of length (or duration) N is a 
discrete-time signal with samples x[n], 
n=0, 1,…, N-1. Each sequence is associated to a 
sampling frequency fs. For a given experiment, it 
is assumed that all sequences share the same 
value of fs. This condition can be imposed by 
using Matlab to resample the sequences that 
have fs different than the chosen one. 

As stated before, AmazonMiner allows for 
comparing sequences of different lengths. This 
can be done in two different ways. The first option 
is to use hidden Markov models (HMM) or 
dynamic time-warping (DTW) (see, e.g., [11]), 

which are algorithms that straightforwardly 
support input vectors with various lengths. 

Alternatively, windowing can be used to convert 
each sequence into one or more subsequences 
(vectors) w of a chosen length L called window or 
frame. For example, in [7], each ATP simulation 
generated 6 sequences (current and voltage for 
the 3 phases), and the input of neural networks 
consisted of L=30 samples, obtained by 
extracting 5 samples from each sequence. 
Besides L, AmazonMiner allows the user to 
specify the window shift S, which is the difference, 
in terms of number of samples, between the index 
n of the first samples of two consecutive windows, 
and controls the amount of overlap between 
them. For a sequence of duration N, there are 
1+floor( (N-L)/S ) subsequences zi, where floor is 
a function that truncates its argument to an 
integer. 

When the user chooses the windowing option, 
AmazonMiner performs the operation over all 
sequences in the experiment and generates a 
unique Weka file with its ARFF extension. For 
generating training and test ARFF files, the user 
should use apply the same windowing procedure 
to two disjoint sets of sequences. At this stage, 
the time-series problem becomes a conventional 
pattern recognition problem, which is based on a 
set of examples (z, y) for training and another for 
testing (a third set, called validation, can be used 
for model selection) [12]. For regression or 
identification problems, the label y is a real or 
integer number, respectively. For unsupervised 
learning, such as clustering, Weka internally 
represents y as an interrogation mark when it is 
undefined. 

The trickiest part of windowing a sequence that 
represents one or more PQ events is the proper 
labeling of each example (zi, yi). For instance, 
assuming a fault started in zk and its label is 2, 
corresponding to, e.g., a AT-fault (phase A to 
ground), it may be the case that subsequences 
zk+1 and zk+2 also have label 2, while all other 
subsequences have label 0 (e.g., No-fault). 
AmazonMiner provides some alternatives for 
labeling, which are all based on the information 
obtained from the header of each amf file. For 
example, giving a fault occurred in zk, all 
neighboring subsequences could be associated 
to a label y1 while the others to some other label 
y2. 

After creating Weka ARFF files, the user can 
count on several state-of-art identification (and 
other data mining) algorithms. Some of the most 
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prominent are: neural networks, support vector 
machines, Bayes’ classifiers and decision trees. 

AmazonMiner automatically evaluates the 
techniques, generating results such as 
misclassification (error) rate and standard 
statistical tests (e.g., t-paired and McNemar's) for 
the given significance level [12].  

The next section describes the main module of 
AmazonTP, which is responsible for creating ATP 
files representing events of interest. 

 
3.0 EVENTS GENERATION MODULE 

Given a network represented by an ATP master 
file, GenEvent is the module of AmazonTP that 
generates files for ATP simulations. GenEvent 
provides the user with two different ways for 
generating events, which are called user-defined 
and semi-automatic. The former requires more 
(manual) intervention, while the latter tries to be 
“smart” enough to create events with minimal 
interaction with the user. 

The user-defined generation is very similar to the 
BGEN (batch generator) software described in [4]. 
Among other differences, it should be noticed that 
BGEN is not in public domain, in contrast to 
AmazonTP. 

GenEvent organizes the interaction with the user 
through submodules called agents (unfortunately, 
an overly used term in computing). Each agent is 
responsible for generating a specific PQ event. 
For example, the shunt-fault agent helps the user 
to generate a specified number of such events. 
When designing the experiment, the user can 
count on more than one agent. 

Given an ATP master file, AmazonTP invokes a 
module called Parser, which interprets the file, 
and organizes the information about the circuit in 
a way that can be conveniently manipulated by 
agents’ algorithms. The agent can retrieve 
information such as the number of nodes and 
their labels, manipulate such data and pass to the 
module FilesWriter, which saves an ATP input file 
and starts organizing the header of the 
correspondent amf file. 

Splitting the task of generating events among 
agents helps to smoother the software evolution. 
For example, a user with knowledge of Java 
programming can incorporate its own agent to 
attend a specific need. Also, some components of 
ATP are harder to deal with, and support to these 
components can be incrementally added. For 
example, an agent can give up of supporting a 
JMarti LCC in favor of a simpler algorithm that 

deals only with distributed Clarke lines. The next 
paragraph discusses a more concrete situation, of 
user-defined fault generation. 

Figure 3 shows a dialog window displayed by this 
agent, which was made equivalent to the one in 
[4]. It generates user-defined events as it relies on 
user input for defining all parameters related to a 
fault. In other words, everything is under the user 
control and there is no randomness in the 
process. Based on information provided by the 
Parser, the agent allows the user to select the 
fault location, its type, and the parameters of the 
RLC and switch components that will be used to 
simulate the fault using ATP. Each simulation 
parameter is a real number (resistance, time, etc.) 
or a string (AT_fault, BT_fault, etc.), which can be 
represented by an integer number. For each real 
number r, the user selects the initial value r[0], the 
increment (or step-size) ∆ and the number λ of 
samples for this parameter, such that r[n]= r[0] + 
∆n, for n=1, 2, …, λ-1. Considering one can vary 
R parameters and rd is the d-th dimension, user-
defined simulations typically create one ATP fie 
for each point in the Cartesian product 
r1[n] × r2[n] ×… rR[n], where rd[n]= rd[0] + ∆dn, for 
n=0, 1, …, λd-1. 

In contrast, an agent that uses the semi-automatic 
behavior releases the user from the task of 
explicitly specifying all the points in the Cartesian 
product, and relaxes the restriction of having 
uniformly sampled parameters. 

 
Figure 3- Dialog window of the user-defined fault generation 
agent. The user can select the type of fault, its location and 

other parameters. 

The semi-automatic generation allows the user to 
specify a uniform or Gaussian probability density 
function for sampling a parameter. That is, the 
user can choose to create, for example, an 
experiment varying the location of a fault 
according to a Gaussian with a given mean (e.g., 
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50% of a line length) and variance. This helps to 
include expert-knowledge of the network 
operation through previously collected statistics. 
Another aspect that improves the user interaction 
upon the user-defined behavior (as in [4]) is the 
following. The agent assumes by the default that 
the fault can occur at any node or line of the 
circuit, and the user can eventually select 
exceptions. Based on that, the user can simply 
say, for example, the experiment will have 1000 
faults uniformly spread over the network. In such 
cases, AmazonTP tries to find a proper way of 
automatically labeling the events based on the 
network topology. If these labels are not 
adequate, the user can rename them in a post-
processing stage. 

This work mainly discusses the generation of 
events given an ATP master file. It should be 
noticed that a similar methodology can be 
adopted to automatically generate variants of 
circuits, that is, various ATP master files. The 
module GenNet is responsible for this task. It was 
designed to do simple tasks such as changing the 
size of a capacitor-bank, while being “smart” 
enough to generate realistic electric circuit data. 

The next section illustrates the use of the 
framework through a simple example. 

 
4.0 SIMULATION RESULTS 

The framework was used to generate fault events 
based on the ATPDraw circuit presented in Figure 
4. This circuit is based on the Eletronorte 
Tramoeste system. To keep the fault identification 
experiment simple, it was assumed the same 
duration (indicated by Tmax in ATP) for all 
simulations. In this case, conventional (or static) 
classifiers can be directly used, as previously 
discussed, but the length L of the input vectors 
would be equal to the number N of samples of a 
sequence, which is prohibitively large in this case. 
Hence, windowing was used to generate Weka 
ARFF files, following the procedure adopted in [7]. 

AmazonTP was used to generate 12,000 
examples (z, y) of 7 types of faults (AT, BT, CT, 
ABT,ACT, BCT, ABCT). Hence, the number of 
distinct classes y is 8, counting with the no-fault 
class. Figure 5 shows a zoom of waveforms at the 
moment of a BT-fault. The faults were generated 
considering they could happen at any position 
along the lines represented by the three ``Z-T 
line'' elements in Figure 4 (C1 shows up on top of 
them). The value of the fault resistance to the 
ground was draw from a uniform pdf U(0, 0.2) 
with support from 0 to 0.2. The begin and duration 
of the fault were draw from U(0, 0.4) and G(0, 

0.07), respectively, where G(µ,σ) represents a 
Gaussian pdf. 

The waveforms generated by the ATP simulations 
had a sampling period equal to 0.5 microseconds 
(delta T = 5E-5 in ATP). The signals were 
decimated in order to create versions with 
sampling frequency equal to fs = 10 kHz, a 
relatively low value (in order to test the algorithms 
under this condition). From each of the three 
phases, 5 samples (window length) of current and 
voltage at the node identified by TR230 in Figure 
4 were collected, resulting in an input vector of 
length L=30. The window shift was made equal to 
5 samples (no window overlap). The heuristic 
used for labeling was the following: the 
intersection between the time interval of the fault 
and the given window was computed, and such 
window would be labeled as no-fault in case the 
intersection is less than 50%, or as a fault (of the 
given type) otherwise. 

The whole procedure led to two ARFF files, one 
for training and another for testing (disjoints sets). 
After that, it was a (relatively) simple matter of 
choosing Weka classifiers to be compared. Table 
1 shows some of the results in terms of 
misclassification error on the test set. The entry 
ANN corresponds to a multilayer perceptron 
trained with backpropagation and having 19 
neurons in the hidden layer. A SVM with a 
Gaussian kernel was used, and its model 
selection was conducted through cross-validation. 
It can be seen that the J4.8 decision tree [12], 
which is the Weka implementation of Quinlan's 
C.45 algorithm, outperformed the other methods, 
but more simulations are needed in order to 
establish solid conclusions. 
Table 1- Classification results for the Tramoeste system using 
several Weka learning algorithms. 

Classifier Error (%) 

Naïve Bayes 14.3 

Decision tree (J4.8) 1.5 

ANN 6.4 

SVM 13.1 

 
5.0 CONCLUSIONS 

With the evolution of simulators such as ATP, 
which are able to provide reliable results, the 
artificially generated signals can effectively help to 
guide the research towards algorithms that are 
effective in real-world situations. The proposed 
framework makes much easier to compare and 
evaluate novel techniques. Besides, the software 
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is in public domain and the labeled datasets can 
be made freely available, which is an incentive to 
reproducing results and facilitate scientific 
collaboration. 

There are several improvements that need to be 
made and both AmazonTP and AmazonMiner 
should be considered ongoing work. One of the 
improvements is the support for the PL4 (ATP) 
binary file format. Currently, AmazonTP asks ATP 

to generate ASCII files, and can then read them 
in. However, the files are bigger than necessary 
and I/O operations become slower. The PL4 
format is not in public domain but the managers of 
the ATP software have been contacted in order to 
provide the documentation and grant permission 
to use this format. 

 

 
Figure 4– The Eletronorte’s Tramoeste system, which was used as the master ATP file for the illustrative example.iii 

 

                                                           
iii The authors would like to thank Eletronorte for providing access to this information. 

 
Figure 5- Snapshot of a plot generated by AmazonMiner: zoom of 
waveforms at the moment of a BT-fault generated by AmazonTP. 
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