

VI SBQEE

21 a 24 de agosto de 2005

Belém – Pará – Brasil

Código: BEL 11 7752

 Tópico: Modelagem e Simulações

A NEW FRAMEWORK FOR EVALUATING PQ EVENT

IDENTIFICATION TECHNIQUES BASED ON ATP SIMULATIONS

ANDREIA SANTOS JOSÉ BORGES ANTONIO CARVALHO MARCUS NUNES SURYA
SANTOSO
 LaPS-UFPA LaPS-UFPA GSEI-UFPA GSEI-UFPA Univ. Texas, USA

ALDEBARO KLAUTAU
LaPS-UFPA

ABSTRACT

Real-world power quality (PQ) events usually are
infrequent and composing a dataset of significant
size is a difficult task. Using simulators to
generate data in well-controlled conditions is a
very useful and popular option. This work
presents a framework based on the ATP
(Alternative Transient Program) simulator, which
allows for evaluating parameter extraction (e.g.,
wavelets) and data mining techniques. This paper
concentrates on describing its use in fault
identification.

PALAVRAS-CHAVE

Pattern recognition, ATP simulation, Time series
classification, fault identification, data mining.

1.0 INTRODUCTION

Boosted by advances in fields such as digital
signal processing and machine learning, current
research in PQ covers a wide range of algorithms.
Unfortunately, the area lacks freely available and
standardized benchmarks and, consequently,
comparisons among different algorithms are
problematic. This situation is shared with other
areas, such as time-series mining [1], but there is
an aggravating element in PQ: real-world events
usually are infrequent and composing a dataset of
significant size is a time-consuming and costly
task. Hence, the datasets of PQ events are often
proprietary and reproducing previously published
results is tricky or even impossible. This work

presents a simulation-based framework that
circumvents these problems and allows data
mining of PQ events [2, 3].

In summary, this work presents a free software,
called AmazonTP, which runs on top of the well-
known ATP simulator. Among other things, the
user can specify relatively few parameters and
the software automatically generates (a possibly
large number of) events and saves them into files.
The software is an important part of a framework
that has been developed at the Federal University
of Pará (UFPA) using ATP-generated data.

There are many works in the literature that use
ATP. The correspondent problems are, for
example, automatic fault identification and relay
testing [4-9]. Some of these follow the same
methodology advocated in this work: given the
lack of real-world data, “artificially” generate
training and test files, and then evaluate
techniques such as neural networks. However,
there is still plenty of room for improving such
methodology.

When the process of “driving” ATP is not easy
and flexible enough, the users tend to create a
relatively small database of events, and figures or
merit such as the error rate cannot be estimated
with an appropriate level of statistical significance.
For example, in [7, 8], all the simulations led to
zero errors, which could eventually hide
interesting observations about specificities of the
algorithms. Therefore, tools for efficiently creating
a rich set of events are very needed and this
works aims to contribute along this line.

592

The AmazonTP, as part of the proposed
framework, makes much easier to compare and
evaluate novel techniques. Besides, the labeled
datasets can be made freely available, which is
an incentive to reproducing results and facilitate
scientific collaboration.

This work is organized as follows. Section 2
briefly describes the proposed framework for data
mining of time series. In Section 3, the module
responsible for easing the generation of events is
discussed. Section 4 presents an example of
using the framework and is followed by the
conclusions.

2.0 PROPOSED FRAMEWORK

The whole framework tries to make easier the
comparison of algorithms, such as neural network
and Bayesian classifiers. The next subsection
discusses the framework in a more general
scenario, and after that it is particularized to the
identification problem.

2.1 Mining time series

The framework allows for evaluating parameter
extraction techniques, such as wavelets, and data
mining algorithms, such as identification (also
called classification) and clustering, as indicated
in Figure 1. The PQ events are generated and
organized by AmazonTP, which repeatedly
invokes ATP to generate each event. The process
depends on an ATP master file, which can be
generated, for example, with ATPDraw. In this
work, it was adopted ATPDraw version 4.1 and
the Windows version of ATP tpbig.exe (Watcom,
source code of December 2003).i AmazonTP
modifies the master file to create a new ATP file,
which is then used as input to the ATP simulator
in order to obtain the correspondent new event.

The raw data (waveforms) of each PQ event is
typically converted into new parameters. This can
be done with Mathwork’s Matlab (see, e.g., [10]).
Alternatively, the user can bypass Matlab and
invoke parameter extraction algorithms supported
by the AmazonMiner, which has been developed
at UFPA for mining time series and relies on
Wekaii [12].

Both softwares AmazonTP and AmazonMiner
were written in Java, according to the object-
oriented paradigm. Through a DLL, AmazonMiner

i Both ATPDraw and ATP are available, for registered
users (i.e., a password is required), from
www.eeug.org.
ii Freely available at
http://www.cs.waikato.ac.nz/ml/weka/.

can pass parameters to Matlab, invoke Matlab
routines and retrieve their results. Hence, besides
feature extraction, Matlab can perform pattern
recognition (similarly to [7]) and plot results. In
such cases, AmazonMiner can be used to simply
automate the process. Alternatively, all data
mining operations can be performed through
AmazonMiner (useful for users that do not have
Matlab).

Figure 1- Flow of information in the proposed framework and
the correspondent software.

Figure 2 (adapted from [4]) summarizes the
process and indicates the files that are generated
by each stage. The final result of AmazonTP is a
set of amf files. Each amf file stores all sequences
generated by one ATP simulation. The waveform
samples are stored as real numbers, represented
as the primitive type float in Java (more
specifically: big-endian, 32-bits, IEEE-754
numbers). A header in text (ASCII) format
precedes these samples. Among other things, the
header indicates the sampling frequency, name of
each sequence (based on its ATP name), number
of events in each file, their location in time and
label (description).

When comparing techniques or promoting one, in
order to make the conclusions as general as
possible, it is useful to test them with PQ events
generated with different circuits (different ATP
master files). In this case, the user may help by
choosing the same names for the sequences of
interest. If that is not possible, AmazonTP has a
post-processing module that allows to rename the
sequences stored in amf files. This module is also
useful when the user wants to rename sequences
representing real-world events obtained, e.g.,
from digital fault recorders (DFR).

PQ events
(ATP data)
AmazonTP

Parameter
extraction

Matlab

Data mining
AmazonMiner

and Weka

593

Figure 2- The files generated along the process.

The next subsection specifically discusses
identification, which is one of the data mining
tasks that the framework supports and helps to
better illustrate its use.

2.2 Identification of Events

The proposed framework is capable of dealing
with sequence data (also called time series) of
variable length [1]. In contrast, most data mining
packages, such as Weka, restrict the events to be
represented by a fixed-length vector. In order to
discuss such issue, some useful definitions are
presented.

A sequence x of length (or duration) N is a
discrete-time signal with samples x[n],
n=0, 1,…, N-1. Each sequence is associated to a
sampling frequency fs. For a given experiment, it
is assumed that all sequences share the same
value of fs. This condition can be imposed by
using Matlab to resample the sequences that
have fs different than the chosen one.

As stated before, AmazonMiner allows for
comparing sequences of different lengths. This
can be done in two different ways. The first option
is to use hidden Markov models (HMM) or
dynamic time-warping (DTW) (see, e.g., [11]),

which are algorithms that straightforwardly
support input vectors with various lengths.

Alternatively, windowing can be used to convert
each sequence into one or more subsequences
(vectors) w of a chosen length L called window or
frame. For example, in [7], each ATP simulation
generated 6 sequences (current and voltage for
the 3 phases), and the input of neural networks
consisted of L=30 samples, obtained by
extracting 5 samples from each sequence.
Besides L, AmazonMiner allows the user to
specify the window shift S, which is the difference,
in terms of number of samples, between the index
n of the first samples of two consecutive windows,
and controls the amount of overlap between
them. For a sequence of duration N, there are
1+floor((N-L)/S) subsequences zi, where floor is
a function that truncates its argument to an
integer.

When the user chooses the windowing option,
AmazonMiner performs the operation over all
sequences in the experiment and generates a
unique Weka file with its ARFF extension. For
generating training and test ARFF files, the user
should use apply the same windowing procedure
to two disjoint sets of sequences. At this stage,
the time-series problem becomes a conventional
pattern recognition problem, which is based on a
set of examples (z, y) for training and another for
testing (a third set, called validation, can be used
for model selection) [12]. For regression or
identification problems, the label y is a real or
integer number, respectively. For unsupervised
learning, such as clustering, Weka internally
represents y as an interrogation mark when it is
undefined.

The trickiest part of windowing a sequence that
represents one or more PQ events is the proper
labeling of each example (zi, yi). For instance,
assuming a fault started in zk and its label is 2,
corresponding to, e.g., a AT-fault (phase A to
ground), it may be the case that subsequences
zk+1 and zk+2 also have label 2, while all other
subsequences have label 0 (e.g., No-fault).
AmazonMiner provides some alternatives for
labeling, which are all based on the information
obtained from the header of each amf file. For
example, giving a fault occurred in zk, all
neighboring subsequences could be associated
to a label y1 while the others to some other label
y2.

After creating Weka ARFF files, the user can
count on several state-of-art identification (and
other data mining) algorithms. Some of the most

594

prominent are: neural networks, support vector
machines, Bayes’ classifiers and decision trees.

AmazonMiner automatically evaluates the
techniques, generating results such as
misclassification (error) rate and standard
statistical tests (e.g., t-paired and McNemar's) for
the given significance level [12].

The next section describes the main module of
AmazonTP, which is responsible for creating ATP
files representing events of interest.

3.0 EVENTS GENERATION MODULE

Given a network represented by an ATP master
file, GenEvent is the module of AmazonTP that
generates files for ATP simulations. GenEvent
provides the user with two different ways for
generating events, which are called user-defined
and semi-automatic. The former requires more
(manual) intervention, while the latter tries to be
“smart” enough to create events with minimal
interaction with the user.

The user-defined generation is very similar to the
BGEN (batch generator) software described in [4].
Among other differences, it should be noticed that
BGEN is not in public domain, in contrast to
AmazonTP.

GenEvent organizes the interaction with the user
through submodules called agents (unfortunately,
an overly used term in computing). Each agent is
responsible for generating a specific PQ event.
For example, the shunt-fault agent helps the user
to generate a specified number of such events.
When designing the experiment, the user can
count on more than one agent.

Given an ATP master file, AmazonTP invokes a
module called Parser, which interprets the file,
and organizes the information about the circuit in
a way that can be conveniently manipulated by
agents’ algorithms. The agent can retrieve
information such as the number of nodes and
their labels, manipulate such data and pass to the
module FilesWriter, which saves an ATP input file
and starts organizing the header of the
correspondent amf file.

Splitting the task of generating events among
agents helps to smoother the software evolution.
For example, a user with knowledge of Java
programming can incorporate its own agent to
attend a specific need. Also, some components of
ATP are harder to deal with, and support to these
components can be incrementally added. For
example, an agent can give up of supporting a
JMarti LCC in favor of a simpler algorithm that

deals only with distributed Clarke lines. The next
paragraph discusses a more concrete situation, of
user-defined fault generation.

Figure 3 shows a dialog window displayed by this
agent, which was made equivalent to the one in
[4]. It generates user-defined events as it relies on
user input for defining all parameters related to a
fault. In other words, everything is under the user
control and there is no randomness in the
process. Based on information provided by the
Parser, the agent allows the user to select the
fault location, its type, and the parameters of the
RLC and switch components that will be used to
simulate the fault using ATP. Each simulation
parameter is a real number (resistance, time, etc.)
or a string (AT_fault, BT_fault, etc.), which can be
represented by an integer number. For each real
number r, the user selects the initial value r[0], the
increment (or step-size) ∆ and the number λ of
samples for this parameter, such that r[n]= r[0] +
∆n, for n=1, 2, …, λ-1. Considering one can vary
R parameters and rd is the d-th dimension, user-
defined simulations typically create one ATP fie
for each point in the Cartesian product
r1[n] × r2[n] ×… rR[n], where rd[n]= rd[0] + ∆dn, for
n=0, 1, …, λd-1.

In contrast, an agent that uses the semi-automatic
behavior releases the user from the task of
explicitly specifying all the points in the Cartesian
product, and relaxes the restriction of having
uniformly sampled parameters.

Figure 3- Dialog window of the user-defined fault generation
agent. The user can select the type of fault, its location and

other parameters.

The semi-automatic generation allows the user to
specify a uniform or Gaussian probability density
function for sampling a parameter. That is, the
user can choose to create, for example, an
experiment varying the location of a fault
according to a Gaussian with a given mean (e.g.,

595

50% of a line length) and variance. This helps to
include expert-knowledge of the network
operation through previously collected statistics.
Another aspect that improves the user interaction
upon the user-defined behavior (as in [4]) is the
following. The agent assumes by the default that
the fault can occur at any node or line of the
circuit, and the user can eventually select
exceptions. Based on that, the user can simply
say, for example, the experiment will have 1000
faults uniformly spread over the network. In such
cases, AmazonTP tries to find a proper way of
automatically labeling the events based on the
network topology. If these labels are not
adequate, the user can rename them in a post-
processing stage.

This work mainly discusses the generation of
events given an ATP master file. It should be
noticed that a similar methodology can be
adopted to automatically generate variants of
circuits, that is, various ATP master files. The
module GenNet is responsible for this task. It was
designed to do simple tasks such as changing the
size of a capacitor-bank, while being “smart”
enough to generate realistic electric circuit data.

The next section illustrates the use of the
framework through a simple example.

4.0 SIMULATION RESULTS

The framework was used to generate fault events
based on the ATPDraw circuit presented in Figure
4. This circuit is based on the Eletronorte
Tramoeste system. To keep the fault identification
experiment simple, it was assumed the same
duration (indicated by Tmax in ATP) for all
simulations. In this case, conventional (or static)
classifiers can be directly used, as previously
discussed, but the length L of the input vectors
would be equal to the number N of samples of a
sequence, which is prohibitively large in this case.
Hence, windowing was used to generate Weka
ARFF files, following the procedure adopted in [7].

AmazonTP was used to generate 12,000
examples (z, y) of 7 types of faults (AT, BT, CT,
ABT,ACT, BCT, ABCT). Hence, the number of
distinct classes y is 8, counting with the no-fault
class. Figure 5 shows a zoom of waveforms at the
moment of a BT-fault. The faults were generated
considering they could happen at any position
along the lines represented by the three ``Z-T
line'' elements in Figure 4 (C1 shows up on top of
them). The value of the fault resistance to the
ground was draw from a uniform pdf U(0, 0.2)
with support from 0 to 0.2. The begin and duration
of the fault were draw from U(0, 0.4) and G(0,

0.07), respectively, where G(µ,σ) represents a
Gaussian pdf.

The waveforms generated by the ATP simulations
had a sampling period equal to 0.5 microseconds
(delta T = 5E-5 in ATP). The signals were
decimated in order to create versions with
sampling frequency equal to fs = 10 kHz, a
relatively low value (in order to test the algorithms
under this condition). From each of the three
phases, 5 samples (window length) of current and
voltage at the node identified by TR230 in Figure
4 were collected, resulting in an input vector of
length L=30. The window shift was made equal to
5 samples (no window overlap). The heuristic
used for labeling was the following: the
intersection between the time interval of the fault
and the given window was computed, and such
window would be labeled as no-fault in case the
intersection is less than 50%, or as a fault (of the
given type) otherwise.

The whole procedure led to two ARFF files, one
for training and another for testing (disjoints sets).
After that, it was a (relatively) simple matter of
choosing Weka classifiers to be compared. Table
1 shows some of the results in terms of
misclassification error on the test set. The entry
ANN corresponds to a multilayer perceptron
trained with backpropagation and having 19
neurons in the hidden layer. A SVM with a
Gaussian kernel was used, and its model
selection was conducted through cross-validation.
It can be seen that the J4.8 decision tree [12],
which is the Weka implementation of Quinlan's
C.45 algorithm, outperformed the other methods,
but more simulations are needed in order to
establish solid conclusions.
Table 1- Classification results for the Tramoeste system using
several Weka learning algorithms.

Classifier Error (%)

Naïve Bayes 14.3

Decision tree (J4.8) 1.5

ANN 6.4

SVM 13.1

5.0 CONCLUSIONS

With the evolution of simulators such as ATP,
which are able to provide reliable results, the
artificially generated signals can effectively help to
guide the research towards algorithms that are
effective in real-world situations. The proposed
framework makes much easier to compare and
evaluate novel techniques. Besides, the software

596

is in public domain and the labeled datasets can
be made freely available, which is an incentive to
reproducing results and facilitate scientific
collaboration.

There are several improvements that need to be
made and both AmazonTP and AmazonMiner
should be considered ongoing work. One of the
improvements is the support for the PL4 (ATP)
binary file format. Currently, AmazonTP asks ATP

to generate ASCII files, and can then read them
in. However, the files are bigger than necessary
and I/O operations become slower. The PL4
format is not in public domain but the managers of
the ATP software have been contacted in order to
provide the documentation and grant permission
to use this format.

Figure 4– The Eletronorte’s Tramoeste system, which was used as the master ATP file for the illustrative example.iii

iii The authors would like to thank Eletronorte for providing access to this information.

Figure 5- Snapshot of a plot generated by AmazonMiner: zoom of
waveforms at the moment of a BT-fault generated by AmazonTP.

REFERENCES
[1] Keogh, E. and Kasetty, S.. On the Need for Time
Series Data Mining Benchmarks: A Survey and
Empirical Demonstration. In the 8th ACM SIGKDD.,
2002, Canada. pp 102-111.
[2] Santoso, S.; Lamoree, J.D. Power. Power quality
data analysis: from raw data to knowledge using
knowledge discovery approach. Engineering Society
Summer Meeting, 2000. IEEE, Volume: 1, 2000.
Page(s): 172 -177 vol. 1.
[3] Santoso, S.; Lamoree, J.D.; Bingham, R.P.
AnswerModule: autonomous expert systems for turning
raw PQ measurements into answers. International

Conference on Harmonics and Quality of Power, vol. 2,
pp. 499 –503, 2000.
[4] M. Kezunovic, T. Popovic, D. Sevcik, H. DoCarmo,
Transient Testing of Protection Relays: Results,
Methodology and Tools, IPST, 2003.
[5] S. Vasilic, Fuzzy Neural Network Pattern
Recognition Algorithm for Classification of the Events in
Power System Networks, Ph.D. Thesis, May 2004,
Texas A&M University
[6] P. da Silveira. Identificação e localização de faltas
utilizando análise por decomposição wavelet para relés
de linhas de transmissão. Tese de doutorado. Agosto
de 2001. UFSC.
[7] B. A. de Souza et al. Classificação de faltas via
redes neurais artificiais. V SBQEE, Aracaju, Brasil. pp.
163-8.
[8] O. Delmont Filho et al. Utilização da transformada
wavelet e RNAs para caracterização de distúrbios na
qualidade da energia. V SBQEE, Aracaju, Brasil. pp.
381-6.
[9] L. Soares e H. de Oliveira. Wavelets na detecção,
classificação e localização de faltas em linhas de
transmissão. V SBQEE, Aracaju, Brasil. pp. 405-10.
[10] A.M. Gole and A. Daneshpooy. Towards Open
Systems: A PSCAD/EMTDC to MATLAB Interface.
IPST, 1997, Pp. 145-149.
[11] L.Rabiner and B.H.Juang. Fundamentals of speech
recognition. Prentice Hall, 1993.
[12] Ian H. Witten and Eibe Frank: Data Mining:
Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, 2nd edition,
2005

