

XVIII Seminário Nacional de Distribuição de Energia Elétrica

SENDI 2008 - 06 a 10 de outubro

Olinda - Pernambuco - Brasil

ORÇACAD – Orçamento de Projetos em AutoCad

Rogério de Oliveira	Eduardo Henrique de Alencar Rachel	
Enersul	Enersul	
rogerio@enbr.com.br	eduardo.rachel@enbr.com.br	

Palavras-chave

AutoCad;

Materiais:

Mão-de-Obra;

Orçamento;

Visual Basic;

RESUMO

O objetivo do projeto é gerar um orçamento, contabilizando materiais e mão-de-obra a partir de um projeto padrão criado em AutoCad, sem que haja a necessidade da contagem manual das estruturas dos projetos de extensão de rede. Foi criada uma template no AutoCad que permite a inserção de estruturas, de modo que todos os projetos mantenham o mesmo padrão. Um programa criado no próprio AutoCad é capaz de reconhecer essas estruturas e quantificá-las.

Depois de quantificados, esses dados são automaticamente exportados para um banco de dados Access, e através de uma interface com o sistema SAP é gerada uma relação de materiais e serviços. Com esse processo, diminuímos consideravelmente o tempo de contagem de estruturas em projetos e aumentamos a confiabilidade na quantificação de materiais e serviços, eliminando uma etapa do processo que seria realizada manualmente.

Atualmente o OrcaCad, é utilizado para extensões de redes rurais, podendo ser ampliadas para todas as extensões de rede e melhorias e outros projetos criados em AutoCad.

1. INTRODUÇÃO

Com o advento do programa de eletrificação rural Luz para Todos, verificamos uma grande necessidade de agilização nos processos de elaboração e orçamento de projetos, mesmo porque o Software AutoCad estava sendo utilizado simplesmente como uma ferramenta de desenho, ficando de lado as inúmeras possibilidades de aproveitamento de seus recursos. O grande volume de obras previstas para o referido programa, também contribuiu para a busca de ferramentas específicas de contagem das estruturas de projetos. Procuramos dentro dos nossos recursos e conhecimentos a construção desta rotina reduzindo o tempo e o trabalho de orçamento de projetos de rede de distribuição rural, proporcionando maior produtividade e maior confiabilidade.

Ao iniciarmos as pesquisas e estudos para o desenvolvimento desta ferramenta, vislumbramos o enorme potencial de utilização dos recursos disponíveis no AutoCad, e apresentaremos nesse trabalho uma parte das inúmeras funções embutidas através do Visual Basic for Application.

2. DESENVOLVIMENTO

Partindo da necessidade de otimização do processo de desenho e orçamento de projetos de rede de distribuição rural, iniciamos estudos e pesquisas dos recursos disponíveis na ferramenta CAD padrão da Enersul (AutoCad). Descobrimos então, a possibilidade de tratamento dos objetos inseridos na área de trabalho do AutoCad (ModelSpace), extraindo e aproveitando suas características e propriedades.

2.1 COMPONENTES E PROPRIEDADES

A primeira providência foi o agrupamento dos elementos que compõem uma estrutura de projeto, ou seja, inserimos em um único bloco todas as características inerentes a ela como exemplificado na figura 1. Através das propriedades nome do objeto, layer e tipo de objeto, conseguimos identificá-los extraindo informações do tipo: comprimento e tipo de cabo utilizado no projeto, tipo de poste, tipo de estrutura, tipo e potência de transformadores, tipo de cavas, tipo de abertura de faixa, chaves e demais estruturas, que fazem parte da maioria dos projetos de redes rurais.

Figura 1. - Composição da Estrutura.

No caso acima, os elementos poste, estrutura, fixação e amarração, são definidos através do nome do bloco e a cava em função do nome do layer.

Para determinação do tipo de condutor e comprimento da rede, utilizamos a seguinte padronização para nomeação do layer:

Exemplo: AT_1#4 onde : AT - Indica que a rede é primária 1# - Indica o número de fases 4 - Indica o condutor

Para quantificação das aberturas de faixa, o projetista deverá desenhar uma linha com o comprimento desejado, no layer específico, por exemplo: se temos um projeto com 1000 metros de abertura de faixa em cerrado, desenhamos uma linha reta de comprimento 1000 no layer abert_cerrado. A partir deste detalhe, o programa irá transportar a informação para a interface gráfica.

Os demais elementos que compõem o projeto estão disponíveis em forma de blocos, que carregam consigo todas as informações e propriedades necessárias.

2.2 IMPLEMENTAÇÃO

Para que a padronização dos elementos acima citados pudessem ser aproveitados, foi utilizado o recurso VBA Manager do AutoCad com o auxílio das seguintes bibliotecas como referências, as quais devem estar ativadas : Visual Basic for Applications, AutoCad 2000 Type Library, OLE Automation e Microsoft Forms 2.0 Object Library.

Através do código de programação, foi possível identificar cada componente existente no Layout Model e extrair suas propriedades quantificando esses componentes.

Os componentes a serem inseridos no Layout Model, deverão ser aqueles definidos como padrão, ou seja, aqueles disponibilizados na Template, caso contrário esta não conformidade será observada quando da contabilização.

2.3 INTERFACE GRÁFICA

Com a implementação do código foi criado também um formulário, o mais simples possível para que qualquer usuário, mesmo sem conhecimento de programação, pudesse utilizar a ferramenta.

O formulário possui algumas listas que recebem os valores quantificados pelo código. Essas listas são divididas em Estruturas, Cabos, Cavas, Ab. Faixas e Não Existentes. Estes itens por suas vez são divididos em Nome da Estrutura e a Quantidade.

Através de botões podem ser executadas várias ações como calcular/quantificar, gravar os dados e abrir o banco de dados. Antes de gravar os dados deve-se preencher alguns campos do formulário : Nº. do grupo de projetos, Ano, Nº. Projeto e Classe Tensão.

Calculo de Materiais	X
Estruturas Cabos Cavas Ab. Faixas Ñ Existe Estrutura Qtde	Calcular Gravar Interface Contabiliza Estruturas ModelSpace Pasta Ñ Existe indica se o componente existe ou não no Banco de
№. SPR Ano 💌	
Classe Tensão	Fechar

Figura 2. Formulário para Quantificação das estruturas.

2.4 CONEXÃO COM O BANCO DE DADOS INTERFACE

Depois da quantificação e o preenchimento dos campos do formulário, o OrcaCad cria uma conexão com o banco de dados Interface através do botão Gravar para o envio dos dados. Antes da gravação é feito uma checagem para verificar se aquele Nº. de conjunto de projetos com aquele Nº. de Projeto já existem para evitar a duplicação de dados e só depois de confirmado esta condição é realizada a gravação.

A partir daí os dados são trabalhados apenas pelo banco de dados Interface, o qual pode ser acessado através do botão Interface do formulário.

Esta ferramenta disponibiliza ao usuário o cadastro de novas estruturas, a consulta e alteração das estruturas existentes (sendo que a alteração é pouco utilizada se o cadastro for realizado corretamente) e a emissão de relatórios.

2.5 EMISSÃO DE RELATÓRIOS

Os relatórios podem ser visualizados e impressos por números de projetos ou pelo conjunto de projetos podendo assim agrupar e quantificar vários projetos da mesma obra.

Esses relatórios trazem aos usuários os códigos que serão digitados no sistema de interface do SAP, a descrição desses itens e as quantidades.

2.6 COMPOSIÇÃO DAS ESTRUTURAS NO BANCO DE DADOS

O sistema existente para orçamento de projeto contém uma relação de códigos de estrutura para cada item de projeto, assim sendo, para obtermos todos os materiais e mão-de-obra de uma estrutura tipo N1 10_150, por exemplo, devemos digitar os seguintes códigos: 291-308-5000 e 58 e as respectivas quantidades. Este procedimento é passível de erros por parte do projetista.

Para redução da margem de erros, fizemos uma composição das estruturas utilizadas nos projetos de tal forma que quando o banco de dados recebe as informações exportadas pelo OrcaCad, todos os códigos são relacionados e contados no banco de dados. Se inserirmos um bloco no desenho que não tenha sido cadastrado na Interface Access a ferramenta informa esta condição e através de um formulário específico, conforme a referência [3] podemos compor a estrutura de maneira fácil e rápida.

8 Fr	m_Estruti	uras : F	ormul	ário		
Codigo do Bloco : N1 10_150						
Те	nsão :		5 -	kV		
Frm_	_Estrutura_	Sub2				
	Códi	go Q	tde	Descrição do Código	^ ^	
•	291	-	1	FIX N1/M1 DT 10/150		
	308	-	1	AMAR PRIM. C/LAÇO 1 P TOPO CABO 4 - CAA		
	5000	-	1	N1 EM 15KV, ISOL. PINO PILAR, CRUZ CONC		
	58		1	POSTE D/T 10/150		
*			1			
					-	
					₩ *	

Figura 3. Formulário para Composição de Estruturas.

2.7 ALOCAÇÃO DOS ARQUIVOS

Os arquivos criados neste trabalho ficam alocados no computador em uma pasta específica (c:\Arquivos de programas\OrcaCad). Dentre os arquivos temos: o OrcaCad.dvb, que é a ferramenta

propriamente dita, o Interface.mdb que é o banco de dados que armazena as informações de composições de estruturas e emite os relatórios, um diretório chamado Bloco que armazena todos os blocos utilizados no projeto e temos também, o arquivo template que traz todos os atalhos para os blocos e o OrcaCad que está no c:\Arquivos de programas\Acad2000\Template.

Para o bom funcionamento do OrcaCad, esta alocação de arquivos deve ser rigorosamente respeitada.

3. CONCLUSÃO

Apesar da grande evolução conquistada pelo OrcaCad no processo de projetos de extensão de redes rurais, ressaltamos possíveis melhorias na parte de digitação dos códigos de estruturas, que ainda é feita manualmente, pois do mesmo modo que é feita a conexão do OrcaCad com o banco de dados Interface, é possível também que o mesmo possa enviar esses dados para outro banco de dados ou até disponibilizar esses dados para outro Aplicativo. Pode-se também, adaptar as estruturas de projeto de extensões de rede urbana, padronizando-as para que o OrcaCad possa identificá-los e quantificá-los como é feito nas extensões de rede rural.

Com uma visão mais ambiciosa, através do registro de normas técnicas e informações obtidas em campo, é possível também automatizar o processo de criação de projetos de forma interativa, de modo que o projetista forneça os parâmetros necessários para a locação das estruturas e o aplicativo insira os componentes definindo-os de acordo com os dados técnicos registrados em um banco de dados.

Considerando a incrível otimização de tempo de orçamento de projetos adquirido através desse sistema, antes era dias para se orçar um projeto com cerca de 3.000 postes manualmente e agora levasse alguns minutos com o OrcaCad, concluímos que na maioria das vezes as ferramentas estão sendo sub-utilizadas. Através de estudos e uma programação de trabalho mais elaborada podemos utilizar esses recursos de forma mais proveitosa e criativa.

4. REFERÊNCIAS BIBLIOGRÁFICAS E/OU BIBLIOGRAFIA

- [1] R. Almeida, O Banco de Dados do AutoCad, ed. Visual Books, 1999.
- [2] B. Burchard, D. Pitzer, Desvendando o AutoCad 2000, 1^a. ed., ed. Campus, 2000.
- [3] R. Baldam, AutoCad 2000 Utilizando Totalmente, 2ª. ed, ed. Érica, 1999.