

## XX Seminário Nacional de Distribuição de Energia Elétrica SENDI 2012 - 22 a 26 de outubro Rio de Janeiro - RJ - Brasil

JORGE LUIZ BARATA JUNIOR

Centrais Elétricas do Norte do Brasil S.A.

jorge.junior@eletronorte.gov.br

# TÉCNICA DE INSPEÇÃO DE TRANSFORMADORES ENERGIZADOS NO SISTEMA ISOLADO DO AMAPÁ

#### Palayras-chave

DETALHADA INSPEÇÃO MANUTENÇÃO PREDITIVA TÉCNICA

#### Resumo

O objetivo deste trabalho é mostrar a comunidade acadêmica uma técnica de inspeção em transformadores energizados, desenvolvida pelos operadores de subestações do Sistema Elétrico Isolado do Amapá. Sendo os equipamentos de vital importância para o sistema de transmissão e distribuição. Tanto pelo seu custo, quanto pela sua necessidade operativa, os transformadores em operação necessitam de uma inspeção detalhada de sua parte superior, evitando pontos de corrosão, além de detectar-se vazamentos com antecedência, pois durante sua operação são expostos a diferentes condições operativas, como sobrecargas e intempéries climáticas, dada às características da região amazônica, com isso buscaram-se fazer inspeções com menor tempo, risco de acidentes e maior confiabilidade. Para tanto é necessário adotar medidas de manutenções preditivas que visem mitigar esses riscos no equipamento, assim como para o operador.

### 1. Introdução

A realização de inspeções em subestações do sistema elétrico de potência é uma tarefa preventiva de suma importância para garantir a integridade dos equipamentos que as compõem. Dentre os equipamentos a serem inspecionados, os transformadores de potência e autotransformadores, mais especificamente suas partes superiores, são os que apresentam maior grau de dificuldade e risco de acidentes para operadores. A manutenção preditiva em transformadores colabora com a maior disponibilidade dos equipamentos ao sistema, executando-a de forma planejada e sistemática, garante que a necessária intervenção venha a acontecer somente no momento preciso, no menor tempo possível, visando reduzir os riscos de uma interrupção não-programada de energia ao sistema ABNT NBR 5356 (1). Para ter uma idéia, durante a

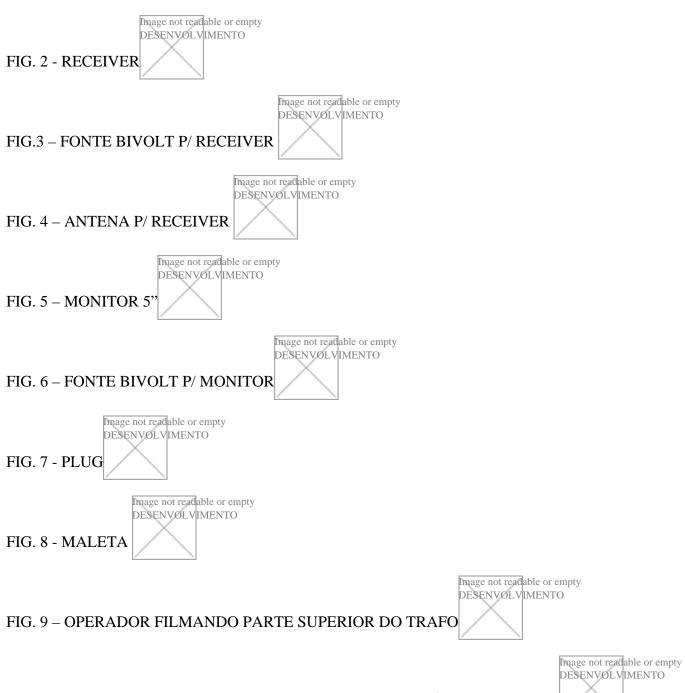
realização de uma inspeção de rotina nas partes superiores de um transformador, o operador leva em média 60 minutos. Essa demora deve-se principalmente ao tempo em que o operador realiza manobras para sua desenergização coloca e reposiciona várias vezes a escada utilizada para ter acesso às partes superiores do transformador, tendo em vista a obtenção de uma visão mais detalhada. É de ressaltar também que esse modelo de inspeção não passa confiabilidade ao operador, devido aos vários riscos expostos, tais como: queda em altura e o choque elétrico. Com a implementação da metodologia TPM (Manutenção Produtiva Total) em 2002 pela Eletrobrás Eletronorte, Regional do Amapá PALMEIRA (02), criou-se um sistema de inspeção em transformadores utilizando espelhos côncavos fixados no mesmo, tirando o operador da exposição do risco de acidente com o uso de escadas, porém este dava uma visão limitada e simplificada do equipamento não passando confiabilidade ao operador e com o passar dos anos esse método mostrou-se ineficaz devido à rápida deterioração dos espelhos causados pelo tempo e indução magnética. Inspeções seguras e com confiabilidade são realizadas durante a manutenção quinquenal (a cada cinco anos) de cada transformador, onde ele é desenergizado e passa por uma grande intervenção conjunta da operação e manutenção planejada, sempre interrompendo o fornecimento de energia ao consumidor. Essa técnica foi premiada com o PRÊMIO MUIRAQUITÃ DE INOVAÇÃO TECNOLÓGICA DA ELETROBRAS ELETRONORTE, em 2008 na faixa prata. Diante do exposto, a falta de segurança e a dificuldade de inspeções nas partes superiores de transformadores de potência e autotransformadores são o problema existente na prática operacional, com o objetivo de aumentar a eficácia na realização de inspeções, e aumentar a segurança, expomos a técnica de inspeção desenvolvida pelos operadores de Subestação do Sistema Isolado do Amapá.

### 2. Desenvolvimento

## 2.0 - PRÊMIO MUIRAQUITÃ DE INOVAÇÃO TECNOLÓGICA

Em 2003 foi o marco na promoção cultural da empresa quanto à Propriedade Intelectual. Neste ano foi constituído o Comitê Gestor de Pesquisa, Desenvolvimento Tecnológico e Inovação da Eletronorte -CGPDI, composto de representantes de todas as diretorias da empresa com atribuição de estabelecer diretrizes corporativas para a Pesquisa, Desenvolvimento Tecnológico e Inovação e, a Superintendência de Pesquisa e Desenvolvimento Tecnológico responsável pela execução e gestão dos programas de pesquisa (PEPD), programas de eficiência energética (PEEE) e proteção à Propriedade Intelectual (PEPI). O Programa Eletronorte de Propriedade Intelectual – PEPI, foi criado e aprovado em 27/01/2004, por meio da RD- 048/2004 para promover a proteção da produção do intelecto, seja no âmbito industrial, científico, literário e/ou artístico e garantir aos autores e responsáveis o direito de auferir os créditos e recompensas por todas estas criações denominada de Propriedade Intelectual. O programa representou uma estratégia ousada e inovadora, consolidando-se em um instrumento fundamental ao esforço empresarial na gestão de novas tecnologias desenvolvidas que eficientizam os processos e projetos da empresa, assim como fomentando a inovação continuada. A primeira grande ação na promoção da cultura para a Propriedade Intelectual realizada pela Superintendência de Pesquisa e Desenvolvimento Tecnológico, foi o registro da marca Eletronorte, ocorrida em 2004, 30 anos após sua constituição. O registro da marca no INPI – Instituto Nacional de Propriedade Industrial garante direitos específicos à empresa, de exclusividade no uso, credibilidade nos empreendimentos e ações da empresa diante aos clientes, acionistas e sociedade em geral fornecendo mais segurança à sua atuação no mercado. Em 2005, com a evolução dos programas e o crescente número de produtos inovadores gerados pelos esforços dos empregados inovadores e gestores dos projetos de pesquisa que trouxeram soluções operacionais para a empresa e contribuíram para eliminar perdas, reduzir e evitar custos, além de capacitar e desenvolver habilidades nos profissionais envolvidos, verificou-se a necessidade de um instrumento que reconhecesse estes esforços, assim como mantivesse o fomento à promoção da cultura da propriedade intelectual, foi então criado o Prêmio Muiraquitã de Inovação Tecnológica instituído na revisão 01 do PEPI, aprovada pela RD 795/2005. Hoje, em 2010, além dos ganhos obtidos com os resultados dos programas PEPD e PEPI, as pesquisas e as inovações geradas internamente

(nas plantas), já citadas, a empresa conta com 38 pedidos de patente, 11 registros de software e o registro da marca da empresa e, contrato de transferência tecnológica que coloca no mercado inovações tecnológicas produzidas com o esforço empresarial na gestão da pesquisa, desenvolvimento e inovação.


# 3.0 - EVOLUÇÃO DA INSPEÇÃO EM TRANSFORMADORES NO SISTEMA ELÉTRICO ISOLADO AMAPÁ

A manutenção preditiva, ao longo dos anos tem sido reconhecida como uma técnica eficaz no gerenciamento da manutenção. As técnicas de monitoramento na preditiva, ou seja, baseadas em condições, incluem: análise de vibração, ultra-som, ferrografia, tribologia, monitoria de processo, inspeção visual, e outras técnicas de análise nãodestrutivas TADEU(3) Após o processo de implementação da metodologia TPM nas instalações da Eletrobrás Eletronorte no Amapá em 2002, a operação de instalações ficou encarregada de gerenciar a Manutenção autônoma, um dos pilares da metodologia, tendo como missão, produzir bons produtos ao menor custo o mais rápido possível. Um dos seus papéis mais importante é detectar e lidar com anomalias do equipamento prontamente, que é o objetivo da boa manutenção. A manutenção autônoma inclui qualquer atividade realizada pela equipe de operadores que tenha função de manutenção e tenha a intenção de manter a planta operando eficazmente e estavelmente para atender os planos de produção. As metas de um programa de manutenção autônoma são: · Prevenir a deterioração do equipamento através da operação correta e de verificações diárias. Levar o equipamento a seu estado ideal através de restauração e o gerenciamento apropriado. Estabelecer as condições básicas necessárias para manter bem o equipamento. Outro objetivo importante é utilizar o equipamento como um meio de ensinar as pessoas novas maneiras de pensar e trabalhar SUZUKI (4). Durante o processo de implantação da metodologia, a equipe de operação utilizou espelhos côncavos fixos como técnica de inspeção em partes superiores em transformadores, para visualizar seus componentes e monitorar pontos de corrosão que surgissem ao longo do tempo, porém, deterioração muito rápida, devido aos longos períodos de chuva na região, a amplitude de visualização dos espelhos não propiciava ao operador um bom diagnóstico das anomalias detectadas, com isso, ao longo dos anos esse modelo de inspeção se tornou ineficiente e obsoleto. Com o amadurecimento da metodologia, foi posto um desafio a equipe de operação, "tornar as inspeções em transformadores mais seguras e eficientes". Buscou-se as mais variadas técnicas de inspeções no mercado, fixação de câmeras nas paredes corta-fogo dos transformadores, câmeras IP, entre outros, que logo se mostraram inviáveis, financeiramente devido ao alto custo de instalação e manutenção, e nossa peculiaridade de ter Subestações a mais de 400Km da Capital. Devido sua fácil aquisição no mercado e seu simples manuseio a microcâmera sem fio, acoplada a uma vara de manobra, foi à técnica mais prática e viável financeiramente que a equipe de operação encontrou para fazer inspeções em transformadores energizados.

# 4.0 - DESCRIÇÕES DA TÉCNICA

A técnica consiste na utilização de um invento que é composto por uma microcâmera sem fio, acoplada a uma vara de manobra, com transmissão via rádio com alcance para até 200 metros de distância e alimentada por uma bateria de 9V (ver Figura 1), receiver de 1,2 GHz (ver Figura 2) para recepção do sinal da microcâmera, fonte de alimentação de 12Vcc para o receiver (ver Figura 3), antena do receiver (ver Figura 4), monitor de 5" (ver Figura 5), fonte de alimentação de 12Vcc/3A para o monitor (ver Figura 6), plug (ver Figura 7) e maleta para acomodação dos equipamentos (ver Figura 8), após montado, esse equipamento subsidia o operador na filmagem da parte superior do equipamento (ver Figura 9), transmitindo a imagem da micro câmera sem fio acoplada na vara de manobra para o monitor de 5" com o operador que faz a inspeção (ver Figura 10).

FIG. 1 – MICROCÂMERA SEM FIO



# FIG. 10 – OPERADOR VISUALIZANDO FILMAGEM ATRAVÉS DO MONITOR

Com esta técnica é possível à realização de inspeções com segurança nas partes superiores de transformadores de potência e autotransformadores, além de reduzir o tempo de inspeção para 15 minutos. As principais características do invento são a mobilidade e a praticidade no manuseio, principalmente no que concerne às subestações desassistidas, localizadas 400 km da capital Macapá, pois, para realizar inspeção nos transformadores nessas instalações a manutenção autônoma deve levar uma escada em seu deslocamento, acarretando em tempo elevado para transporte e acomodação no veiculo, sendo também necessárias duas pessoas para carregá-la. Toda essa rotina expõe o operador ao risco de acidente durante a tarefa.

Por outro lado, o invento muda esse paradigma, pois as partes constituintes são portáteis e leves necessitando de apenas um operador para o manuseio além do mais, elimina-se a utilização da escada. Sua instalação no campo é pratica e rápida trazendo tranquilidade e conforto na execução da inspeção. Como resultado, tem-se

um custo de R\$ 788,77 com a produção do equipamento (ver Tabela 1), que nos trouxe uma redução no tempo de inspeção de 75% (ver Gráfico 1), possibilitando uma redução no custo com inspeção em transformadores de R\$ 99.134,28 (ver Tabela 2) e um custo evitado com instalação de câmeras em paredes corta fogo dos transformadores para inspeção de R\$ 11.086,00 (ver Gráfico 2). inspeção de R\$ 11.086,00 (ver Gráfico 2).

## CUSTO DO EQUIPAMENTO

| ITEM DESCRIÇÃO                        | VALOR R\$      |
|---------------------------------------|----------------|
| 01 CAMERA SEM FIO E RECEIVER          | 299,00         |
| 02 MONITOR 5"                         | 300,00         |
| 03 MALETA                             | 49,90          |
| 04 FONTE BIVOLT P/ RECEIVER           | 25,00          |
| 05 PILHA 9V                           | 7,00           |
| 06 CAIXA PLÁSTICA 4X2                 | 0,69           |
| 07 ESPELHO TAMPA CEGA                 | 2,18           |
| 08 INTERRUPTOR                        | 2,50           |
| 09 FONTE BIVOLT P/ MONITOR            | 50,00          |
| 10 ESPUMA                             | 12,50          |
| 11 MÃO DE OBRA P/ ADPTAÇÕES NO MONITO | OR 40,00       |
| TOTAL                                 | R\$ 788,77     |
| CUSTO EVITADO COM A INSPEÇÃO          |                |
| CUSTO DA INSPEÇÃO ANTES DA MELHORIA   | R\$ 132.179,04 |
| CUSTO DA INSPEÇÃO DEPOIS DA MELHORIA  | R\$ 33.044,76  |
| TOTAL                                 | R\$ 99.134,28  |

### 3. Conclusões

A técnica trouxe para a gestão da Manutenção Autônoma uma grande satisfação, pois, sua facilidade de manuseio aperfeiçoou e agilizou o processo de inspeções de transformadores e autotransformadores das Subestações do Sistema Elétrico do Amapá, diminuindo a exposição do operador ao risco de acidente, reduzindo os custos das inspeções e tornando os diagnósticos mais precisos e eficientes. Sendo um equipamento de fácil manuseio, possibilita a visão das partes superiores dos transformadores energizados com mais segurança. Com isso melhorando a confiabilidade do Sistema Elétrico do Estado do Amapá, pois as subestações de Subtransmissão são operadas por funcionários da Eletronorte, que busca manter um auto

indice de confiabilidade do sistema.

## 4. Referências bibliográficas

(1) ABNT NBR 5356 - Transformador de Potência, Especificação, Dezembro 1981. (2) PALMEIRA, J.N. FLEXIBILIZAÇÃO ORGANIZACIONAL: APLICAÇÃO DE UM MODELO DE PRODUTIVIDADE TOTAL. RIO DE JANEIRO: EDITORA FGV, 2002 (3) ALMEIDA, MARCIO TADEU. MANUTENÇÃO PREDITIVA: CONFIABILIDADE E QUALIDADE. ITAJUBÁ - MG. (4) SUZUKI, Tokutaro. TPM en Industrias de Proceso. Espanha: TGP Hoshin, 1995. (5) JAPAN INSTITUTE OF PLANT MAINTENANCE. Autonomus Mainteance for Operators. Japan: JIPM, 1997.