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1 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil,
lucilabento@ppgi.ufrj.br, vigusmao@dcc.ufrj.br

2 Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, Brasil,
drboccardo@inmetro.gov.br, rcmachado@inmetro.gov.br

3 COPPE-Sistemas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil,

jayme@nce.ufrj.br

Abstract

Techniques of watermarking/fingerprinting concern the embedding of identification
data into a digital object, allowing for later claims of authorship/ownership and therefore
discouraging piracy. Graph-based watermarking schemes comprise an encoding algorithm,
which translates a given number (the identifier, usually a positive integer) onto some ap-
propriately tailored graph (the watermark), and a decoding algorithm, which extracts the
original identifier from a given watermark. Collberg, Kobourov, Carter and Thomborson
(Error-correcting graphs for software watermarking, WG’03) introduced one such scheme,
meant for software watermarking, in which an integer key was encoded onto a reducible
permutation graph. A number of interesting ideas have further improved the original
scheme, including the formulation of a particularly promising linear-time codec by Chroni
and Nikolopoulos. We extend the work of these authors in various aspects. First, we char-
acterize the class of graphs constituting the image of Chroni and Nikolopoulos’s encoding
function. Furthermore, we formulate a novel, linear-time decoding algorithm which de-
tects and recovers from ill-intentioned removals of k  2 edges. Finally, our results also
include the detection of k  5 edge modifications (insertions/deletions) in polynomial
time and a proof that such bound is tight, so the resilience of the considered watermark-
ing scheme is fully determined. Our proof that graphs of a well-characterized class can
detect and recover from bounded-magnitude distortive attacks reinforces the interest in
regarding those graphs as possible watermarking solutions to numerous applications.
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1 Introduction

Preventing the theft of intellectual property has always been a highly sought after goal. In
particular, the criminal reproduction of software known as software piracy has become a big
concern in recent years. Watermarking/fingerprinting an object is the act of embedding an
identifier of authorship/ownership within that object, so to discourage illegal copying.

Di↵erent approaches to software watermarking have been devised to date, still none of them
was ever proved to be su�ciently resilient, let alone immune, to the numerous forms of pro-
gram transformation attacks. Naturally, a lot of research towards strengthening such methods
has been endeavored. The pioneering graph-based watermarking algorithm was formulated
by Davidson and Myrhvold [10]. It inspired the publication, by Venkatesan, Vazirani and
Sinha [14], of the first watermarking algorithm where a positive integer—the key—was encoded
as a special digraph that could be disguised into the control flow graph (CFG) of a program.
Other graph-based watermarking schemes include [6, 8, 9, 13].

In this paper, we consider the ingenious graph-based watermarking scheme introduced by
Collberg, Kobourov, Carter and Thomborson [7], and afterwards developed and improved upon
by Chroni and Nikolopoulos [1].1 These latter authors proposed a linear-time codec (an encod-
ing/decoding procedure) to obtain watermarks that are particular instances of the reducible
permutation graphs introduced in [7]. Chroni and Nikolopoulos’s watermarks possess impor-
tant structural properties and are also meant to be embedded into the CFG of the software to
be protected.2 Though the mechanics of the proposed codec is well described in [1], the class
of graphs that constitute the generated watermarks has not been fully characterized. More-
over, not much was known thus far about the resilience of Chroni and Nikolopoulos’s graphs
to malicious attacks, even though their ability to withstand attacks in the form of a single
edge modification has been suggested without proofs. A thorough scrutiny of the structural
properties of the aforementioned graph class allowed us to give it a formal characterization, as
well as to introduce a linear-time decoding algorithm that retrieves the correct, untampered
with encoded key even when k  2 edges of the watermark are missing. Such algorithm allows
for the determination of the exact resilience level of such graphs against distortive attacks.

The paper is organized as follows. In Section 2, we recall the codec from [1], formulating
and proving a number of properties of the employed structures. In Section 3, we characterize
the class of canonical reducible permutation graphs. In Section 4, we tackle the edge-removal
attack model, proving that, for keys of size n > 2, it is always possible to identify and recover
from attacks that remove k  2 edges. Finally, in Section 5, we formulate a linear-time
algorithm that reconstructs the original digraph, in case k  2 edges are missing, recovering
the encoded key thereafter. As a corollary of the results hitherto presented, we fully determine
the resilience of the considered watermarking scheme. Section 6 concludes the paper with our
final remarks and future directions. Throughout the paper, many proofs were omitted due to
space constraints, and shall be included in a future extended version of the text.

2 The watermark by Chroni and Nikolopoulos

We start by briefly recalling the watermarking codec described in [1].

1A series of papers on watermarking by the same authors include, but is not limited to, [2–5].
2It is not in the scope of this paper the discussion of techniques to embed the watermark graph into a CFG.
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Let ! be a positive integer key, with n the size of the binary representation B of !. Let
also n0 and n1 be the number of 0’s and 1’s, respectively, in B, and let f0 be the index3 of the
leftmost 0 in B. The extended binary B⇤ is obtained by concatenating n digits 1, followed by
the one’s complement4 of B and by a single digit 0. We let n⇤ = 2n+ 1 denote the size of B⇤,
and we define Z0 = (z0

i

), i = 1, . . . , n1 + 1, as the ascending sequence of indexes of 0’s in B⇤,
and Z1 = (z1

i

), i = 1, . . . , n+ n0, as the ascending sequence of indexes of 1’s in B⇤.
Let S be a sequence. We denote by SR the sequence formed by the elements of S in backward

order. If S = (s
i

), i = 1, . . . , t, is a sequence of size t, and there is an integer k  t such that the
subsequence consisting of the elements of S with indexes less than or equal to k is ascending,
and the subsequence consisting of the elements of S with indexes greater than or equal to k is
descending, then we say S is bitonic. If all t elements of a sequence S are distinct and belong
to {1, . . . , t}, then S is a permutation. If S is a permutation of size t, and, for all 1  i  t, the
equality i = s

si holds, then we say S is self-inverting. In this case, the unordered pair (i, s
i

) is
called a 2-cycle of S, if i 6= s

i

, and a 1-cycle of S, if i = s
i

. If S1, S2 are sequences, we denote
by S1||S2 the sequence formed by the elements of S1 followed by the elements of S2.

Back to Chroni and Nikolopoulos’s codec, the bitonic permutation P
b

= Z0||ZR

1 = (b
i

),
i = 1, . . . , n⇤, is obtained by appending to Z0 the elements of Z1 in backward order, and, finally,
the self-inverting permutation P

s

is obtained from P
b

as follows: for i = 1, . . . , n⇤, index b
i

in P
s

is assigned to element s
bi = b

n

⇤�i+1, and index b
n

⇤�i+1 in P
s

is assigned to element s
bn⇤�i+1

= b
i

.
In other words, the 2-cycles of P

s

correspond to the n unordered pairs of distinct elements
of P

b

that are equidistant from the extremes of P
b

, namely the pairs (p, q) = (b
i

, b
n

⇤�i+1), for
i = 1, . . . , n. Since the central index i = n + 1 of P

b

is the solution of equation n⇤ � i+ 1 = i,
element b

n+1—and no other—will constitute a 1-cycle in P
s

. We refer to such element of P
s

as
its fixed element, and we let f denote it.

The watermark generated by the codec from [1] belongs to the class of reducible permutation
graphs first defined in [7]. It is a directed graph G whose vertex set is {0, 1, . . . , 2n + 2}, and
whose edge set contains 4n + 3 edges, to wit: a path edge (u, u � 1) for u = 1, . . . , 2n + 2,
constituting a Hamiltonian path that will be unique in G, and a tree edge from u to q(u), for
u = 1, . . . , n⇤, where q(u) is defined as the vertex v > u with the greatest index in P

s

to the left
of u, if such v exists, or 2n+ 2 otherwise5. A graph so obtained is called a canonical reducible
permutation graph.

Let us glance at an example. For ! = 43, we haveB = 101011, n = 6, n0 = 2, n1 = 4, f0 = 2,
B⇤ = 1111110101000, n⇤ = 13, Z0 = (7, 9, 11, 12, 13), Z1 = (1, 2, 3, 4, 5, 6, 8, 10), P

b

= (7, 9, 11,
12, 13, 10, 8, 6, 5, 4, 3, 2, 1), P

s

= (7, 9, 11, 12, 13, 10, 1, 8, 2, 6, 3, 4, 5) and f = 8. The generated
watermark G will have, along with the path edges in Hamiltonian path 14 ! 13 ! · · · ! 0,
also the tree edges (1, 10), (2, 8), (3, 6), (4, 6), (5, 6), (6, 8), (7, 14), (8, 10), (9, 14), (10, 13), (11, 14),
(12, 14) and (13, 14), as illustrated in Figure 1.

Canonical reducible permutation graphs are certainly not the only graphs that could be
used to encode an integer, and they are certainly not the only graphs that could be disguised
into a software’s CFG. Yet they do have such properties, hence they are an appropriate choice.
Moreover, they present some structural, encoding-related redundancy that grants them some
resilience against attacks, as we shall see. We now state a number of properties of these graphs.

Let G still be the canonical reducible permutation graph associated to a key ! of size n,

3The index of the leftmost element in all sequences considered in the text is 1.
4The one’s complement of a binary R is obtained by swapping all 0’s in R for 1’s and vice-versa.
5The rationale behind the name tree edge is the fact that such edges induce a spanning tree of G \ {0}.
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Figure 1: Watermark for key ! = 43.

and P
b

and P
s

, respectively, the bitonic and the self-inverting permutations dealt with during
the construction of G.

Property 1 For 1  i  n, element b
n+i+1 in P

b

is equal to n� i+ 1, that is, the n rightmost
elements in P

b

are 1, 2, . . . , n when read from right to left.

Property 2 The elements whose indexes are 1, 2, . . . , n in P
s

are all greater than n.

Property 3 The fixed element f satisfies f = n + f0, unless the key ! is equal to 2k � 1 for
some integer k, whereupon f = n⇤ = 2n+ 1.

Property 4 In self-inverting permutation P
s

, elements indexed 1, 2, . . . , f � n� 1 are respec-
tively equal to n+1, n+2, . . . , f�1, and elements indexed n+1, n+2, . . . , f�1 are respectively
equal to 1, 2, . . . , f � n� 1.

Property 5 The first element in P
s

is s1 = n+ 1, and the central element in P
s

is s
n+1 = 1.

Property 6 If f 6= n⇤, then the index of element n⇤ in P
s

is equal to n1 + 1, and vice-versa.
If f = n⇤, then the index of element n⇤ in P

s

is also n⇤.

Property 7 The subsequence of P
s

consisting of elements indexed 1, 2, . . . , n+ 1 is bitonic.

Property 8 For u 6= 2n + 1, (u, 2n + 2) is a tree edge of watermark G if, and only if, u � n
is the index of a digit 1 in the binary representation B of the key ! represented by G.

Property 9 If (u, k) is a tree edge of watermark G, with k 6= 2n + 2, then (i) element k
precedes u in P

s

; and (ii) if v is located somewhere between k and u in P
s

, then v < u.

3 Canonical reducible permutation graphs

This section is devoted to the characterization of the class of canonical reducible permutation
graphs. After describing some terminology, we define the class using purely graph-theoretical
predicates, then we prove it corresponds exactly to the set of all watermark instances possibly
produced by Chroni and Nikolopoulos’s encoding algorithm [1]. Finally, we characterize it in a
way that suits the design of a new, resilient, linear-time decoding algorithm.

Given a graph G, we let V (G) and E(G) denote, as usual, the vertex set and edge set
of G, respectively. Also, we let N+

G

(v) and N�
G

(v) respectively denote the set of out-neighbors
and in-neighbors of vertex v 2 V (G). A reducible flow graph [11,12] is a directed graph G with
source s 2 V (G), such that, for each cycle C of G, every path from s to C reaches C at a same
vertex. It is well known that a reducible flow graph has at most one Hamiltonian cycle.

Definition 10 A self-labeling reducible flow graph relative to n > 1 is a directed graph G s.t.
(i) |V (G)| = 2n+ 3;
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Figure 2: Representative trees of the watermarks for keys (a) ! = 31 and (b) ! = 43.

(ii) G presents exactly one directed Hamiltonian path, hence there is a unique labeling function
� : V (G)! {0, 1, . . . , 2n+ 2} of the vertices of G such that the order of the labels along
the Hamiltonian path is precisely 2n+ 2, 2n+ 1, . . . , 0;

(iii) considering the labeling � as in the previous item, N+
G

(0) = ;, N�
G

(0) = {1},
N+

G

(2n+ 2) = {2n+ 1}, |N�
G

(2n+ 2)| � 2, and, for all v 2 V (G) \ {0, 2n + 2},
N+

G

(v) = {v � 1, w}, for some w > v.

From now on, without loss of generality, we shall take � for granted and assume the vertex
set of any self-labeling reducible flow graph G is the very set V (G) = {0, 1, . . . , 2n+2}, yielding
the unique Hamiltonian path 2n+ 2, 2n+ 1, . . . , 0 in G.6

Let G be a self-labeling reducible flow graph and H its unique Hamiltonian path. We
define a tree T with vertex set V (T ) = V (G) \ {0}, and edge set E(T ) comprising all edges
in E(G) \ E(H) deprived of their orientation. We call T the representative tree of G, and we
regard it as a rooted tree whose root is 2n + 2, and where the children of each v 2 V (T ),
denoted N

T

(v), are exactly the in-neighbors of v in G \ E(H). In addition, we regard T as an
ordered tree, that is, for each v 2 V (T ), the children of v are always considered according to an
ascending order of their labels. Finally, for v 2 T , we denote by N⇤

T

(v) the set of descendants
of v in T . Figure 2 depicts two representative trees.

Observation 11 The representative tree T of a self-labeling reducible flow graph G satisfies
the max-heap property, that is, if vertex u is a child of vertex v in T , then v > u.

We convey the idea that a representative tree T satisfies the max-heap property by saying that
T is a descending, ordered, rooted tree.

Definition 12 A self-inverting permutation S of size 2n+ 1 is said to be canonical if:

(i) there is exactly one 1-cycle in S;

(ii) each 2-cycle (s
i

, s
j

) of S satisfies 1  i  n, for s
i

> s
j

;

(iii) s1, . . . , sn+1 is a bitonic subsequence of S starting at s1 = n+ 1 and ending at s
n+1 = 1.

6By doing so, we may simply compare two vertices, e.g. v > u (or v greater than u, in full writing), whereas
we would otherwise need to compare their images under �, e.g. �(v) > �(u).
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Lemma 13 In any canonical self-inverting permutation of {1, . . . , 2n+1}, the fixed element f
satisfies f 2 [n+ 2, 2n+ 1].

Let T be some representative tree, therefore a descending, ordered, rooted tree. The preorder
traversal P of T is a sequence of its vertices that is recursively defined as follows. If T is empty,
P is also empty. Otherwise, P starts at the root r of T , followed by the preorder traversal of
the subtree whose root is the first (i.e. smallest) child of r, followed by the preorder traversal
of the subtree whose root is the second smallest child of r, and so on. The last (rightmost)
element of P is referred to as the rightmost element of T as well.

Lemma 14 The preorder traversal of a representative tree T is unique. Conversely, a repre-
sentative tree T is uniquely determined by its preorder traversal.

If we remove the first element of P , the remaining sequence is said to be the root-free
preorder traversal of T .

Definition 15 A canonical reducible permutation graph G is a self-labeling reducible graph such
that the root-free preorder traversal of the representative tree of G is a canonical self-inverting
permutation.

Theorem 16 A digraph G is a watermark instance produced by Chroni and Nikolopoulos’s
encoding algorithm [1] if, and only if, G is a canonical reducible permutation graph.

Let T be the representative tree of some canonical reducible permutation graph G, and
P a canonical self-inverting permutation corresponding to the root-free preorder traversal
of T . We refer to the fixed element f of P also as the fixed element (or vertex) of both G
and T . Similarly, the 2-cyclic elements of P correspond to cyclic elements (or vertices) of both
G and T . The concepts we describe next will be employed in the characterization of canonical
reducible permutation graphs.

A vertex v 2 V (T )\{2n+2} is considered large when n < v  2n+1; otherwise, v  n and
v is dubbed as small. Denote by X, Y , respectively, the subsets of large and small vertices in T ,
so |X| = n+1 and |Y | = n. By Lemma 13, f 2 X. We then define X

c

= X \{f} = {x1, . . . , xn

}
as the set of large cyclic vertices in T .

We say that T is a type-1 tree—please see Figure 3(a)—when

(i) n+ 1, n+ 2, . . . , 2n+ 1 are children of the root 2n+ 2 in T ; and

(ii) 1, 2, . . . , n are children of 2n.

Elseways, we say that T is a type-2 tree relative to f— please see Figure 3(b)—when

(i) n+ 1 = x1 < x2 < . . . < x
`

= 2n+ 1 are the children of 2n+ 2, for some ` 2 [2, n� 1];

(ii) x
i

> x
i+1 and x

i

is the parent of x
i+1, for all i 2 [`, n� 1];

(iii) 1, 2, . . . , f � n� 1 are children of x
n

;

(iv) x
i

= n+ i, for 1  i  f � n� 1;

(v) f is a child of x
q

, for some q 2 [`, n] satisfying x
q+1 < f whenever q < n; and

(vi) N⇤
T

(f) = {f � n, f � n + 1, . . . , n} and y
i

2 N⇤
T

(f) has index x
yi � f + 1 in the preorder

traversal of N⇤
T

[f ].
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Lemma 17 If y
r

is the rightmost vertex of a type-2 representative tree T relative to some
f 6= 2n+ 1, then y

r

= `.

The following theorem characterizes canonical reducible permutation graphs.

Theorem 18 A digraph G is a canonical reducible permutation graph if, and only if, G is a
self-labeling reducible graph and
(i) the fixed element of G is 2n+ 1 and G has a type-1 representative tree; or

(ii) the fixed element of G belongs to [n+ 2, 2n] and G has a type-2 representative tree.

4 Restoring a damaged watermark

In this section, we analyze the e↵ects of a distortive attack against a canonical reducible per-
mutation graph G whereby two edges e1, e2 2 E(G) were removed. Let G0 = G \ {e1, e2}.

4.1 Reconstructing the Hamiltonian path

The algorithm given in pseudocode as Procedure 1 reconstructs the Hamiltonian path H of G,
in case e1 or e2 belonged to H, and classifies each missing edge as either a path edge or a tree
edge. The input is the damaged watermark graph G0. If v 2 V (G0), we denote by H(v) the
subsequence of the Hamiltonian path of G that ends at v and starts as far as possible in G0.
Also, we denote by first(H(v)) the first vertex of the subsequence H(v).

The mechanics of Procedure 1 is that of sewing together the k0  3 maximal directed
paths resulting from the deletion of k  2 edges from G. In short, each such directed path is
reassembled by placing vertices, one by one in backwards fashion, starting at a vertex with out-
degree 0 among those which have not yet been placed. The proof that it is always possible to
restore the Hamiltonian path this way relies on the characterization of representative trees and
is not overly complicated. It is, however, quite lengthy, since each possible case (see Figure 4)
resulting from such an attack must be tackled separately. It has therefore been omitted.

As for the time complexity of the algorithm, note that, in general, 1  |V0|  2 and
1  |V1|  3. The latter follows from the definition of a self-labeling reducible graph and from
the fact that two edges were removed from G. Moreover, each path H(v

i

) can be computed in
O(|H(v

i

)|) time. Consequently, the entire algorithm has complexity O(n).

2n+2

x1 x2 ...

x +1

x  = 2n+1

xq

xn
f

1 2 ... f-n-1

...
...

( f )N*
T

2n +2

n+1 n+2 2n 2n+1...

(a)

(b)

1 2 ... n

!

!

Figure 3: (a) A type-1 representative tree. (b) A type-2 representative tree.
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Procedure 1: Reconstructing the Hamiltonian path

V0  {v 2 V (G0) s.t. |N+
G

0 | = 0}; V1  {v 2 V (G0) s.t. |N+
G

0 | = 1}
if |V0| = 1 then

let v0 be the unique element in V0

if |H(v0)| = 2n+ 3 then H  H(v0), return H and edge types as in Figure 4(a)
else if 9 v1 2 V1 such that |H(v0)|+ |H(v1)| = 2n+ 3 then

H  H(v1)||H(v0), return H and edge types as in Figures 4(b,c)
else

let v1, v
0
1 2 V1 be such that

|H(v0)|+ |H(v1)|+ |H(v01)| = 2n+ 3 and N+
G

0(first(H(v1)) \H(v01) 6= ;
H  H(v01)||H(v1)||H(v0), return H and edge types as in Figure 4(d)

else
let v0, v

0
0 be the elements in V0

if |H(v0)|+ |H(v00)| = 2n+ 3 then
let v0 be such that N+

G

0(first(H(v0))) \H(v00) 6= ;
H  H(v00)||H(v0), return H and edge types as in Figures 4(e,f)

else
let v00 2 V0 and v1 2 V1 be such that v00 2 N+

G

0(first(H(v1))
H  H(v00)||H(v1)||H(v0), return H and edge types as in Figures 4(g,h)

4.2 Determining the fixed element

Suppose the watermark G has been attacked, which resulted in a damaged watermark G0,
where two unknown edges are missing. Now we shall recognize the fixed element of the original
watermark, given the damaged one. Getting to know the fixed element of G will play a crucial
role in retrieving the missing tree edges and consequently restoring the original key w.

The two following theorems, whose proofs we omit, characterize the fixed element f of G
when f = 2n + 1 and when f < 2n + 1, respectively. Let T be the representative tree of
the original watermark G. We consider the case where the two edges that have been removed
belong to T . Denote by F the forest obtained from T by the removal of two edges.

Theorem 19 Let F be a forest obtained from the representative tree T by removing two edges,
where n > 2. The fixed element of T is f = 2n+ 1 if, and only if,

(i) vertex 2n+ 1 is a leaf of F ; and

(ii) the n small vertices of G0 are children of 2n in F , with the possible exception of at most
two of them, in which case they must be isolated vertices.

Theorem 20 Let F be a forest obtained from the representative tree T of watermark G by
removing two of its edges, and let x  2n be a large vertex of T which is not a child of 2n+ 2.
Vertex x is the fixed element f of G if, and only if,
(i) the large vertex x has a sibling z in F , and x > z; or

(ii) the subset of small vertices Y 0 ⇢ Y , Y 0 = {x�n, x�n+1, . . . , n} can be partitioned into
at most two subsets Y 0

1 , Y
0
2 , such that ; 6= Y 0

1 = N+
F

(x) and Y 0
2 is the vertex set of one of

the trees which form F ; or, whenever the previous conditions do not hold,

(iii) the large vertex x is the rightmost vertex of one of the trees of F , while the rightmost
vertices of the remaining trees are all small vertices.

8



~~

~ ~~

~

~~~

~~~

~~

~~

~~

~

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4: Possible scenarios for the Hamiltonian path of a damaged watermark G. Dashed
arrows indicate missing edges. Broken arrows (with a tilde in the middle) indicate paths of
arbitrary size d � 0 (i.e., both ends may coincide). Squares, solid circles and hollow circles
represent vertices whose out-degrees in G0 are, respectively, 0, 1 and 2. The tree edges of G0

are not being shown (unless those removed by the attacker, represented by backward arrows).

w

z f

f or f
Y' U = N ( f )
1

F
*

Y' = {x-n, x-n+1, ..., n}

2

f

Y'T' T"

Y' Y'

f

Y'

or
(a) (b) (c)

Figure 5: (a–c) Conditions (i), (ii) and (iii) of Theorem 20, respectively.

The above theorems lead to an algorithm that finds the fixed element of G in linear time.
The input is the forest F , obtained from the representative tree T of G by the removal of two
edges. The algorithm is as follows: first, check whether f = 2n + 1. This is a direct task,
applying Theorem 19: just verify if 2n + 1 is a leaf of F and whether all small vertices are
children of 2n, except possibly two, which must be isolated vertices. If both conditions are
satisfied then set f = 2n+ 1 and terminate the algorithm. Otherwise, proceed to determining
f < 2n+ 1 by checking the conditions described in Theorem 20 (see also Figure 5).

4.3 Determining the root’s children

After having identified the fixed element of the watermark, we are almost in a position to
determine the tree edges that have been removed.

Observe that, when f = 2n+1, the task is trivial, since, in this case, by Theorem 18, there
can be only one canonical reducible permutation graph G relative to n. Such a graph is precisely
the one with a type-1 representative tree T , which is unique for each n > 2 (cf. Property 3
of canonical reducible permutation graphs, in Section 2). By definition, the root-free preorder
traversal of a type-1 representative tree, when f = 2n+1, is n+1, n+2, . . . , 2n, 1, 2, . . . , n, 2n+1.

We therefore want to determine the children of 2n+2 restricted to the case where f < 2n+1.
Let G be a watermark, T its representative tree and F the forest obtained from T by the removal
of two edges. As usual, f stands for the fixed element of T , X is the set of large vertices other
than 2n + 2, and X

c

= X \ {f}. Finally, denote by A ✓ X
c

the subset of ascending large
cyclic vertices of T , which we shall refer to simply as the ascending vertices, and denote by D
the set D = X

c

\ A of descending large cyclic vertices of T , or simply the descending vertices.

9



Procedure 2: Finding f 6= 2n+ 1

1. If F contains a large vertex x having a sibling z
then let f  max{x, z} and terminate the algorithm. Otherwise,

2. For each large vertex x of F satisfying N
F

(x) 6= ; and each small y 2 N
F

(x),
let Y 0 = {x� n, x� n+ 1, . . . , n}. If N⇤

F

(x) = Y 0 or N⇤
F

(x) ⇢ Y 0,
and Y 0 \N+

F

(x) is the vertex set of one of the trees of F ,
then let f  x and terminate the algorithm. Otherwise,

3. Find the preorder traversals of the three trees of F , and
then let f be the unique vertex that is both large and the rightmost element
of the preorder traversal of some tree of F .

Procedure 3: Constructing the set of large ascending vertices

1. If F [X
c

] [ {2n+ 2} is connected then A N
F

(2n+ 2)
and terminate the algorithm. Otherwise,

2. If F [X
c

] [ {2n+ 2} contains no isolated vertices then A N
F

(2n+ 2) [ {2n+ 1}
and terminate the algorithm. Otherwise,

3. If F [X
c

] [ {2n+ 2} contains two isolated vertices x, x0 then A N
F

(2n+ 2) [ {x, x0}
and terminate the algorithm. Otherwise,

4. If F [X
c

] [ {2n+ 2} contains a unique isolated vertex x then
if |N⇤

F

(f)| = 2n� f + 1 then
let y

r

be the rightmost vertex of N⇤
F

(f)
if |N

F

(2n+ 2)| < y
r

then A N
F

(2n+ 2) [ {x, 2n+ 1}
else A N

F

(2n+ 2)
else A N

F

(2n+ 2) [ {x}

Given the forest F and its fixed element f , Procedure 3 computes the set A, which, due to the
representative tree properties of T , corresponds precisely to the children of its root 2n+2. The
notation still employs N

F

(v) and N⇤
F

(v) for the children and the descendants of vertex v in F ,
respectively. We denote by F [X

c

] the subgraph of F induced by the vertices in X
c

.

Theorem 21 Procedure 3 correctly computes the set of ascending vertices of T in linear time.

Once we manage to recover the set A of children of the root 2n + 2 in T , the decoding
algorithm proposed in the next section can be run, retrieving the encoded key !. This su�ces
to prove that the original, undamaged watermark can be fully restored: a simple possibility is
to run the (linear) encoding algorithm from scratch, with ! as input. We have, however, an
even simpler algorithm that restores the watermark based on the reconstitution of its preorder
traversal, but we shall not present it in the present paper due to space constraints.

5 A new decoding algorithm

We can now formulate our new decoding algorithm. If the input watermark presents k  2
missing edges, the algorithm is able to fix it, prior to running the decoding step. The decoding

10



step itself is absolutely straightforward, and relies on the following theorem.7

Theorem 22 Let ! be a given key and G the watermark corresponding to !. Let A0 =
x1, . . . , x`�1 be the ascending sequence of children of 2n + 2, in the representative tree T of
G, that are di↵erent from 2n+ 1. Then ! =

P
xi2A0 22n�xi .

As a consequence of the above theorem, whenever the input watermark has not been tam-
pered with, the proposed algorithm simply retrieves the encoded key in a faster, less complicated
fashion than the original decoding algorithm from [1].8

Algorithm 4: Obtaining the key from a possibly damaged watermark

1. Let k  |E(G)|� (4n+ 3).

2. If k > 2, report the occurrence of k edge removals and halt.

3. If 0 < k  2, proceed to the reconstitution (Procedures 1–3).

4. Calculate and return the key ! as indicated by Theorem 22.

Theorem 23 Algorithm 4 retrieves the correct key ! � 4, encoded in a watermark with up to
two missing edges, in linear time.

Corollary 24 Distortive attacks in the form of k edge modifications (insertions/deletions)
against canonical reducible permutation graphs G, with |V (G)| = 2n+3, n > 2, can be detected
in polynomial time, if k  5, and also recovered from, if k  2. Such bounds are tight.

6 Final considerations

After characterizing the class of canonical reducible permutation graphs, we formulated a linear-
time algorithm that restores a member of that class presenting up to two missing edges. Our
results therefore have proved that canonical reducible permutation graphs are always able
to detect and recover from malicious attacks in the form of k  2 edge removals9 in linear
time. Moreover, we have shown that attacks in the form of k  5 edge modifications (inser-
tions/deletions) can be detected in polynomial time. Such level of resilience, we remark, is a
very important feature of the original watermarking scheme.

Future directions. A necessary condition for a watermark G1 to recover from the removal
of a subset of edges E 0

1 ⇢ E(G1), with |E 0
1| = k, is that G0

1 = G1 \E 0
1 is not isomorphic to some

graph G0
2 obtained from watermark G2 6= G1 by the removal of k edges. For k  2, we have

shown this condition is always satisfied, provided n > 2, and we have proved this is not always
true for k � 3. An interesting open problem is therefore to characterize the set of keys ⌦(k)
whose corresponding watermarks can always recover from the removal of k � 3 edges.

Future research focusing on the development of watermarking schemes resilient to attacks
of greater magnitude may consider extending the concept of canonical reducible permutation
graphs by allowing permutations with h-cycles, with h > 2, as well as multiple fixed elements.

7Though some reconstitution steps were written as if exactly two edges were missing, the case where a single
edge is missing is at least as easy, since removing an arbitrary edge transforms the latter case into the former.

8Note that, in this case, it is straightforward to determine the set A, as A = N�
G (2n+ 2).

9The sole exceptions are two very small instances G,G0 corresponding to keys of size n = 2, namely keys
! = 2 (binary B = 10) and !0 = 3 (binary B = 11), respectively, which become isomorphic when edges
(1, 5), (4, 5) are removed from G1 and edges (1, 4), (4, 6) are removed from G2.
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